133 research outputs found
Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals
Thiol-capped CdTe nanocrystals were used to fabricate light-emitting diodes,
consisting of an emissive nanocrystal multilayer deposited via layer-by-layer,
sandwiched between indium-tin-oxide and aluminum electrodes. The emissive and
electrical properties of devices with different numbers of nanocrystal layers
were studied. The improved structural homogeneity of the nanocrystal multilayer
allowed for stable and repeatable current- and electroluminescence-voltage
characteristics. These indicate that both current and electroluminescence are
electric-field dependent. Devices were operated under ambient conditions and a
clear red-light was detected. The best-performing device shows a peak external
efficiency of 0.51% and was measured at 0.35mA/cm2 and 3.3V
Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices
In the present day, the information technologies and telecommunications sector
continually increase their demand for low cost, low power consumption, high
performance electroluminescent devices for display applications. Furthermore,
general lighting applications, such as white light and large array colour
displays, would also benefit from an increase in the overall efficiency. Several
technologies are being investigated to fulfill these needs, such as organic
light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field
effect emission devices. A new and promising technology is light emitting
devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs)
already making an impact on the market in an increasingly large number of
applications, hybrid technologies based on organic/inorganic nano-composites are
a potential the next step. The incorporation of highefficiency fluorescent
semiconductor nanoparticles has been shown to have a beneficial effect on device
performance, [1] modify the colour output from the device 2 and provide a
simplified route to generation of LED type devices. [3
Influence of drying technique on Pt/In₂O₃ aerogels for methanol steam reforming
In this paper we present a comparison of aerogels which are dried under different conditions. Of those, most important are the solvent, temperature, and pressure. Criteria of comparison rely mostly on results from analysis of nitrogen adsorption experiments, as well as transmission electron microscopy imaging. Platinum loaded indium oxide aerogels were picked as a model system for this study as they can be used as highly effective heterogeneous catalysts in methanol steam reforming. The compared drying methods include supercritical drying from CO2, supercritical CO2 - ethanol mixture, freeze drying from tert-butanol and ambient conditions drying from acetone and 1-Methoxyheptafluoropropane. High porosities and large specific surface areas can be achieved via supercritical, freeze- and ambient conditions drying, while retaining the original gel morphology in this system for most methods except freeze drying and ambient conditions drying from acetone
Galvanic replacement induced electromotive force to propel Janus micromotors
Electrochemistry is a highly versatile part of chemical research which is involved in many of the processes in the field of micromotion. Its input has been crucial from the synthesis of microstructures to the explanation of phoretic mechanisms. However, using electrochemical effects to propel artificial micromotors is still to be achieved. Here, we show that the forces generated by electrochemical reactions can not only create active motion, but they are also strong enough to overcome the adhesion to the substrate, caused by the increased ionic strength of the solutions containing the ions of more noble metals themselves. The galvanic replacement of copper by platinum ions is a spontaneous process, which not only provides a sufficiently strong electromotive force to propel the Janus structures but also results in asymmetric Pt-hatted structures, which can be further used as catalytic micromotors
Recommended from our members
Increasing the Diversity and Understanding of Semiconductor Nanoplatelets by Colloidal Atomic Layer Deposition
Nanoplatelets (NPLs) are a remarkable class of quantum confined materials with size-dependent optical properties, which are determined by the defined thickness of the crystalline platelets. To increase the variety of species, the colloidal atomic layer deposition method is used for the preparation of increasingly thicker CdSe NPLs. By growing further crystalline layers onto the surfaces of 4 and 5 monolayers (MLs) thick NPLs, species from 6 to 13 MLs are achieved. While increasing the thickness, the heavy-hole absorption peak shifts from 513 to 652 nm, leading to a variety of NPLs for applications and further investigations. The thickness and number of MLs of the platelet species are determined by high-resolution transmission electron microscopy (HRTEM) measurements, allowing the interpretation of several contradictions present in the NPL literature. In recent years, different assumptions are published, leading to a lack of clarity in the fundamentals of this field. Regarding the ongoing scientific interest in NPLs, there is a certain need for clarification, which is provided in this study. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
Recommended from our members
Voltage-Controlled ON-OFF-Switching of Magnetoresistance in FeOx/Fe/Au Aerogel Networks
Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON-OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON-OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage)
Recommended from our members
Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating
Maximal Anderson Localization and Suppression of Surface Plasmons in Two-Dimensional Random Au Networks
Two-dimensional random metal networks possess unique electrical and optical
properties, such as almost total optical transparency and low sheet resistance,
which are closely related to their disordered structure. Here we present a
detailed experimental and theoretical investigation of their plasmonic
properties, revealing Anderson (disorder-driven) localized surface plasmon
(LSP) resonances of very large quality factors and spatial localization close
to the theoretical maximum, which couple to electromagnetic waves. Moreover,
they disappear above a geometry-dependent threshold at ca. 1.7 eV in the
investigated Au networks, explaining their large transparencies in the optical
spectrum
Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO2 Reduction
With the merits of quantum dots (QDs) (e.g., high molar extinction coefficient, strong visible light absorption, large specific surface area, and abundant functional surface active sites) and aerogels (e.g., self-supported architectures, porous network), semiconductor QD aerogels show great prospect in photocatalytic applications. However, typical gelation methods rely on oxidative treatments of QDs. Moreover, the remaining organic ligands (e.g., mercaptoacids) are still present on the surface of gels. Both these factors inhibit the activity of such photocatalysts, hampering their widespread use. Herein, we present a facile 3D assembly of II–VI semiconductor QDs capped with inorganic (NH4)2S ligands into aerogels using H2O as a dispersion solvent. Without any sacrificial agents, the resulting CdSe QD aerogels achieve a high CO generation rate of 15 μmol g–1 h–1, which is 12-fold higher than that of pristine-aggregated QD powders. Our work not only provides a facile strategy to fabricate QD aerogels but also offers a platform for designing advanced aerogel-based photocatalysts
- …