127 research outputs found

    Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals

    Get PDF
    Thiol-capped CdTe nanocrystals were used to fabricate light-emitting diodes, consisting of an emissive nanocrystal multilayer deposited via layer-by-layer, sandwiched between indium-tin-oxide and aluminum electrodes. The emissive and electrical properties of devices with different numbers of nanocrystal layers were studied. The improved structural homogeneity of the nanocrystal multilayer allowed for stable and repeatable current- and electroluminescence-voltage characteristics. These indicate that both current and electroluminescence are electric-field dependent. Devices were operated under ambient conditions and a clear red-light was detected. The best-performing device shows a peak external efficiency of 0.51% and was measured at 0.35mA/cm2 and 3.3V

    Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices

    Get PDF
    In the present day, the information technologies and telecommunications sector continually increase their demand for low cost, low power consumption, high performance electroluminescent devices for display applications. Furthermore, general lighting applications, such as white light and large array colour displays, would also benefit from an increase in the overall efficiency. Several technologies are being investigated to fulfill these needs, such as organic light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field effect emission devices. A new and promising technology is light emitting devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs) already making an impact on the market in an increasingly large number of applications, hybrid technologies based on organic/inorganic nano-composites are a potential the next step. The incorporation of highefficiency fluorescent semiconductor nanoparticles has been shown to have a beneficial effect on device performance, [1] modify the colour output from the device 2 and provide a simplified route to generation of LED type devices. [3

    Galvanic replacement induced electromotive force to propel Janus micromotors

    Get PDF
    Electrochemistry is a highly versatile part of chemical research which is involved in many of the processes in the field of micromotion. Its input has been crucial from the synthesis of microstructures to the explanation of phoretic mechanisms. However, using electrochemical effects to propel artificial micromotors is still to be achieved. Here, we show that the forces generated by electrochemical reactions can not only create active motion, but they are also strong enough to overcome the adhesion to the substrate, caused by the increased ionic strength of the solutions containing the ions of more noble metals themselves. The galvanic replacement of copper by platinum ions is a spontaneous process, which not only provides a sufficiently strong electromotive force to propel the Janus structures but also results in asymmetric Pt-hatted structures, which can be further used as catalytic micromotors

    Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO2 Reduction

    Get PDF
    With the merits of quantum dots (QDs) (e.g., high molar extinction coefficient, strong visible light absorption, large specific surface area, and abundant functional surface active sites) and aerogels (e.g., self-supported architectures, porous network), semiconductor QD aerogels show great prospect in photocatalytic applications. However, typical gelation methods rely on oxidative treatments of QDs. Moreover, the remaining organic ligands (e.g., mercaptoacids) are still present on the surface of gels. Both these factors inhibit the activity of such photocatalysts, hampering their widespread use. Herein, we present a facile 3D assembly of II–VI semiconductor QDs capped with inorganic (NH4)2S ligands into aerogels using H2O as a dispersion solvent. Without any sacrificial agents, the resulting CdSe QD aerogels achieve a high CO generation rate of 15 μmol g–1 h–1, which is 12-fold higher than that of pristine-aggregated QD powders. Our work not only provides a facile strategy to fabricate QD aerogels but also offers a platform for designing advanced aerogel-based photocatalysts

    Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction

    Get PDF
    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of PdxAu-Pt core-shell aerogels comprised of an ultrathin Pt shell and a composition-tunable PdxAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd-transition metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiency for oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg-1Pt and 2.53 mA cm-2, which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts

    A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics

    Get PDF
    We present a novel top-electrode spray-coating process for the solution-based deposition of silver nanowires (AgNWs) onto vacuum-processed small molecule organic electronic solar cells. The process is compatible with organic light emitting diodes (OLEDs) and organic light emitting thin film transistors (OLETs) as well. By modifying commonly synthesized AgNWs with a perfluorinated methacrylate, we are able to disperse these wires in a highly fluorinated solvent. This solvent does not dissolve most organic materials, enabling a top spray-coating process for sensitive small molecule and polymer-based devices. The optimized preparation of the novel AgNW dispersion and spray-coating at only 30 °C leads to high performance electrodes directly after the deposition, exhibiting a sheet resistance of 10.0 Ω □−1 at 87.4% transparency (80.0% with substrate). By spraying our novel AgNW dispersion in air onto the vacuum-processed organic p-i-n type solar cells, we obtain working solar cells with a power conversion efficiency (PCE) of 1.23%, compared to the air exposed reference devices employing thermally evaporated thin metal layers as the top-electrode
    • …
    corecore