133 research outputs found

    Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals

    Get PDF
    Thiol-capped CdTe nanocrystals were used to fabricate light-emitting diodes, consisting of an emissive nanocrystal multilayer deposited via layer-by-layer, sandwiched between indium-tin-oxide and aluminum electrodes. The emissive and electrical properties of devices with different numbers of nanocrystal layers were studied. The improved structural homogeneity of the nanocrystal multilayer allowed for stable and repeatable current- and electroluminescence-voltage characteristics. These indicate that both current and electroluminescence are electric-field dependent. Devices were operated under ambient conditions and a clear red-light was detected. The best-performing device shows a peak external efficiency of 0.51% and was measured at 0.35mA/cm2 and 3.3V

    Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices

    Get PDF
    In the present day, the information technologies and telecommunications sector continually increase their demand for low cost, low power consumption, high performance electroluminescent devices for display applications. Furthermore, general lighting applications, such as white light and large array colour displays, would also benefit from an increase in the overall efficiency. Several technologies are being investigated to fulfill these needs, such as organic light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field effect emission devices. A new and promising technology is light emitting devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs) already making an impact on the market in an increasingly large number of applications, hybrid technologies based on organic/inorganic nano-composites are a potential the next step. The incorporation of highefficiency fluorescent semiconductor nanoparticles has been shown to have a beneficial effect on device performance, [1] modify the colour output from the device 2 and provide a simplified route to generation of LED type devices. [3

    Influence of drying technique on Pt/In₂O₃ aerogels for methanol steam reforming

    Get PDF
    In this paper we present a comparison of aerogels which are dried under different conditions. Of those, most important are the solvent, temperature, and pressure. Criteria of comparison rely mostly on results from analysis of nitrogen adsorption experiments, as well as transmission electron microscopy imaging. Platinum loaded indium oxide aerogels were picked as a model system for this study as they can be used as highly effective heterogeneous catalysts in methanol steam reforming. The compared drying methods include supercritical drying from CO2, supercritical CO2 - ethanol mixture, freeze drying from tert-butanol and ambient conditions drying from acetone and 1-Methoxyheptafluoropropane. High porosities and large specific surface areas can be achieved via supercritical, freeze- and ambient conditions drying, while retaining the original gel morphology in this system for most methods except freeze drying and ambient conditions drying from acetone

    Galvanic replacement induced electromotive force to propel Janus micromotors

    Get PDF
    Electrochemistry is a highly versatile part of chemical research which is involved in many of the processes in the field of micromotion. Its input has been crucial from the synthesis of microstructures to the explanation of phoretic mechanisms. However, using electrochemical effects to propel artificial micromotors is still to be achieved. Here, we show that the forces generated by electrochemical reactions can not only create active motion, but they are also strong enough to overcome the adhesion to the substrate, caused by the increased ionic strength of the solutions containing the ions of more noble metals themselves. The galvanic replacement of copper by platinum ions is a spontaneous process, which not only provides a sufficiently strong electromotive force to propel the Janus structures but also results in asymmetric Pt-hatted structures, which can be further used as catalytic micromotors

    Maximal Anderson Localization and Suppression of Surface Plasmons in Two-Dimensional Random Au Networks

    Full text link
    Two-dimensional random metal networks possess unique electrical and optical properties, such as almost total optical transparency and low sheet resistance, which are closely related to their disordered structure. Here we present a detailed experimental and theoretical investigation of their plasmonic properties, revealing Anderson (disorder-driven) localized surface plasmon (LSP) resonances of very large quality factors and spatial localization close to the theoretical maximum, which couple to electromagnetic waves. Moreover, they disappear above a geometry-dependent threshold at ca. 1.7 eV in the investigated Au networks, explaining their large transparencies in the optical spectrum

    Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO2 Reduction

    Get PDF
    With the merits of quantum dots (QDs) (e.g., high molar extinction coefficient, strong visible light absorption, large specific surface area, and abundant functional surface active sites) and aerogels (e.g., self-supported architectures, porous network), semiconductor QD aerogels show great prospect in photocatalytic applications. However, typical gelation methods rely on oxidative treatments of QDs. Moreover, the remaining organic ligands (e.g., mercaptoacids) are still present on the surface of gels. Both these factors inhibit the activity of such photocatalysts, hampering their widespread use. Herein, we present a facile 3D assembly of II–VI semiconductor QDs capped with inorganic (NH4)2S ligands into aerogels using H2O as a dispersion solvent. Without any sacrificial agents, the resulting CdSe QD aerogels achieve a high CO generation rate of 15 μmol g–1 h–1, which is 12-fold higher than that of pristine-aggregated QD powders. Our work not only provides a facile strategy to fabricate QD aerogels but also offers a platform for designing advanced aerogel-based photocatalysts
    corecore