196 research outputs found

    Post-Quantum Secure Over-the-Air Update of Automotive Systems

    Get PDF
    With the announcement of the first winners of the NIST Post-Quantum Cryptography (PQC) competition in 2022, the industry has now a confirmed foundation to revisit established cryptographic algorithms applied in automotive use cases and replace them with quantum-safe alternatives. In this paper, we investigate the application of the NIST competition winner CRYSTALS-Dilithium to protect the integrity and authenticity of over-the-air update packages. We show how this post-quantum secure digital signature algorithm can be integrated in AUTOSAR Adaptive Platform Update and Configuration Management framework and evaluate our approach practically using the NXP S32G vehicle network processor. We discuss two implementation variants with respect to performance and resilience against relevant attacks, and conclude that PQC has little impact on the update process as a whole

    Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects

    Get PDF
    COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19

    La Ley de Ohm: resultados de una propuesta experimental desde el enfoque del Aprendizaje Activo de la Física

    Get PDF
    En este artículo proponemos un cambio en el laboratorio tradicional, planteándolo de manera que favorezca el aprendizaje activo y reflexivo en estudiantes de nivel secundario. La tarea experimental es presentada de manera de integrar conceptos, procedimientos y actitudes en quienes la desarrollan. De los resultados alcanzados parece claro que recurrir a estas metodologías de enseñanza permite a los estudiantes acceder a niveles de aprendizaje superiores respecto de los niveles logrados en las clases tradicionales, y ayuda a que los alumnos comprendan la experiencia, interpreten los resultados alcanzados y se involucren en el proceso de su propio aprendizaje. Entendemos que, con una selección conveniente de actividades y adecuando la complejidad del trabajo experimental, es factible implementar esta técnica de trabajo activo, contribuyendo a mejorar significativamente aspectos algo deficientes en las aulas del nivel secundario, y ayudando a fomentar en estos jóvenes el interés por la Física

    Free Energy Self-Averaging in Protein-Sized Random Heteropolymers

    Full text link
    Current theories of heteropolymers are inherently macrpscopic, but are applied to folding proteins which are only mesoscopic. In these theories, one computes the averaged free energy over sequences, always assuming that it is self-averaging -- a property well-established only if a system with quenched disorder is macroscopic. By enumerating the states and energies of compact 18, 27, and 36mers on a simplified lattice model with an ensemble of random sequences, we test the validity of the self-averaging approximation. We find that fluctuations in the free energy between sequences are weak, and that self-averaging is a valid approximation at the length scale of real proteins. These results validate certain sequence design methods which can exponentially speed up computational design and greatly simplify experimental realizations.Comment: 4 pages, 3 figure

    Machine detector interface for the e+e−e^+e^- future circular collider

    Full text link
    The international Future Circular Collider (FCC) study aims at a design of pppp, e+e−e^+e^-, epep colliders to be built in a new 100 km tunnel in the Geneva region. The e+e−e^+e^- collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) and 375 GeV (tt_bar). To reach such unprecedented energies and luminosities, the design of the interaction region is crucial. The crab-waist collision scheme has been chosen for the design and it will be compatible with all beam energies. In this paper we will describe the machine detector interface layout including the solenoid compensation scheme. We will describe how this layout fulfills all the requirements set by the parameters table and by the physical constraints. We will summarize the studies of the impact of the synchrotron radiation, the analysis of trapped modes and of the backgrounds induced by single beam and luminosity effects giving an estimate of the losses in the interaction region and in the detector.Comment: 6 pages, 7 figures, 62th ICFA ABDW on High Luminosity Circular e+e−e^+e^- Colliders, eeFACT2018, Hong Kong, Chin

    Longitudinal Beam Dynamics and Coherent Synchrotron Radiation at cSTART

    Get PDF
    The compact STorage ring for Accelerator Research and Technology (cSTART) project aims to store electron bunches of LWFA-like beams in a very large momentum acceptance storage ring. The project will be realized at the Karlsruhe Institute of Technology (KIT, Germany). Initially, the Ferninfrarot Linac- Und Test-Experiment (FLUTE), a source of ultra-short bunches, will serve as an injector for cSTART to benchmark and emulate laser-wakefield accelerator-like beams. In a second stage a laser-plasma accelerator will be used as an injector, which is being developed as part of the ATHENA project in collaboration with DESY and Helmholtz Institute Jena (HIJ). With an energy of 50 MeV and damping times of several seconds, the electron beam does not reach equilibrium emittance. Furthermore, the critical frequency of synchrotron radiation is 50 THz and in the same order as the bunch spectrum, which implies that the entire bunch radiates coherently. We perform longitudinal particle tracking simulations to investigate the evolution of the bunch length and spectrum as well as the emitted coherent synchrotron radiation. Finally, different options for the RF system are discussed

    Molecular and morphological diversity in the /Rhombisporum clade of the genus Entoloma with a note on E. cocles

    Get PDF
    A combined morphological and molecular genetic study of the European species within the /Rhombisporum clade of the genus Entoloma reveals a high species diversity. This group comprises typical grassland species with pronounced and welldifferentiated cheilocystidia, and a wide range of spore shapes varying from rhomboid to five-angled. To fix the concept of the classical species E. rhombisporum, a neotype is designated. Nine species are described as new to science based on the result of nrDNA ITS phylogeny with additional gap coding, and morphological characterization: E. caulocystidiatum, E. lunare, E. pararhombisporum, E. pentagonale, E. perrhombisporum, E. rhombiibericum, E. rhombisporoides, E. sororpratulense, and E. subcuboideum. The ITS sequences of the holotypes of previously described species belonging to the /Rhombisporum clade, viz., E. laurisilvae and E. pratulense have also been generated and are published here for the first time. Since many of the above-mentioned species have been misidentified as E. cocles, it seemed opportune to also study this species and to designate a neotype to fix its current concept. A key including European species is presented. As most of the species are potentially important indicators for threatened grassland communities, the 130 ITS barcodes newly generated for this study may be useful as a reference in conservation and metabarcoding projects. Agaricales . Conservation . Endangered grassland communities . Entolomataceae semi-cryptic diversity . Taxonomy . TricholomatinaepublishedVersio
    • …
    corecore