5,025 research outputs found

    Cover slip external cavity diode laser

    Full text link
    The design of a 671 nm diode laser with a mode-hop-free tuning range of 40 GHz is described. This long tuning range is achieved by simultaneously ramping the external cavity length with the laser injection current. The external cavity consists of a microscope cover slip mounted on piezoelectric actuators. In such a configuration the laser output pointing remains fixed, independent of its frequency. Using a diode with an output power of 5-7 mW, the laser linewidth was found to be smaller than 30 MHz. This cover slip cavity and feedforward laser current control system is simple, economical, robust, and easy to use for spectroscopy, as we demonstrate with lithium vapor and lithium atom beam experiments.Comment: 7 pages, 6 figures, submitted to Review of Scientific Instruments 7/29/0

    Coastal aquifers: Scientific advances in the face of global environmental challenges

    Get PDF
    This article has been published in final form at http://dx.doi.org/10.1016/j.jhydrol.2017.04.046 © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (25 May 2017) in accordance with the publisher’s copyright polic

    Paranoid thinking, cognitive bias and dangerous neighbourhoods: implications for perception of threat and expectation of victimisation

    Get PDF
    Background: Paranoid thinking is prevalent in the non-clinical population and cognitive mechanisms of heuristic reasoning and jumping to conclusions bias contributes to its formation and maintenance. Aims: This study investigated the degree to which paranoia, perceived environmental risk, heuristic reasoning and jumping to conclusions bias (measured with the beads task) contribute to misinterpretation of neutral stimuli, and whether this informed judgements regarding vulnerability to threat and crime. It is also investigated whether impulsiveness is a confounding factor on the beads task. Methods: Two hundred participants were recruited using a snowball-sampling method for a quantitative cross-sectional study. Participants reported demographic information, three psychometric questionnaires and two experimental tasks via an online paradigm hosted by the Bristol Online Survey tool. Results: Participants with high paranoia scores perceived their environment to be more dangerous than those with low scores. Participants with high paranoia scores also overestimated threat in neutral stimuli and had high expectations of future victimisation. Jumping to conclusions on the beads task did not predict fear of crime outcomes, but was predicted by impulsivity. Conclusion: Participants who demonstrated paranoid thinking were more likely to reside in perceived dangerous neighbourhoods and overestimate threat. While this could indicate a paranoid heuristic, it is a potentially rational response to prior experiences of crime and victimisation. Implications and suggestions for future research are discussed

    Dean Emeritus Patrick J. Rohan

    Get PDF
    (Excerpt) Patrick J. Rohan’s connection to St. John’s reaches back more than half a century. He graduated from St. John’s University in 1954 and from the School of Law in 1956. Two years later, he joined the Law School faculty, where he served for fifty-two years until his retirement in June 2009. He died just a few months later, on November 26, 2009. The School of Law community mourns the passing of this man of St. John’s—Dean Emeritus, Professor of Law, alumnus, supporter, and friend

    Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways.

    Get PDF
    The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the noncanonical NF-κB pathway, but as a RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBɛ. IκB control of RelB minimized spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-κB signaling module identified control points of this unexpected cell type-specific regulation. Fibroblasts that we engineered accordingly showed DC-like RelB control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent T cell responses

    Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation

    Get PDF
    3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications

    Intelligence Processing Units Accelerate Neuromorphic Learning

    Full text link
    Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency when performing inference with deep learning workloads. Error backpropagation is presently regarded as the most effective method for training SNNs, but in a twist of irony, when training on modern graphics processing units (GPUs) this becomes more expensive than non-spiking networks. The emergence of Graphcore's Intelligence Processing Units (IPUs) balances the parallelized nature of deep learning workloads with the sequential, reusable, and sparsified nature of operations prevalent when training SNNs. IPUs adopt multi-instruction multi-data (MIMD) parallelism by running individual processing threads on smaller data blocks, which is a natural fit for the sequential, non-vectorized steps required to solve spiking neuron dynamical state equations. We present an IPU-optimized release of our custom SNN Python package, snnTorch, which exploits fine-grained parallelism by utilizing low-level, pre-compiled custom operations to accelerate irregular and sparse data access patterns that are characteristic of training SNN workloads. We provide a rigorous performance assessment across a suite of commonly used spiking neuron models, and propose methods to further reduce training run-time via half-precision training. By amortizing the cost of sequential processing into vectorizable population codes, we ultimately demonstrate the potential for integrating domain-specific accelerators with the next generation of neural networks.Comment: 10 pages, 9 figures, journa
    • …
    corecore