12 research outputs found

    Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases

    Full text link
    Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of nn copies of the universal enveloping algebra U(\g) of a semisimple Lie algebra \g. This family is parameterized by collections of pairwise distinct complex numbers z1,...,znz_1,...,z_n. We obtain some new commutative subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the hamiltonians of bending flows and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde

    Gaudin subalgebras and stable rational curves

    Get PDF
    Gaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by generators of the Kohno-Drinfeld Lie algebra t_n. We show that Gaudin subalgebras form a variety isomorphic to the moduli space of stable curves of genus zero with n+1 marked points. In particular, this gives an embedding of the moduli space in a Grassmannian of (n-1)-planes in an n(n-1)/2-dimensional space. We show that the sheaf of Gaudin subalgebras over the moduli space is isomorphic to a sheaf of twisted first order differential operators. For each representation of the Kohno--Drinfeld Lie algebra with fixed central character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic subscheme of a twisted version of the logarithmic cotangent bundle of the moduli space.Comment: 16 pages. References added, misprints correcte

    Limits of Gaudin Systems: Classical and Quantum Cases

    Get PDF
    We consider the XXX homogeneous Gaudin system with N sites, both in classical and the quantum case. In particular we show that a suitable limiting procedure for letting the poles of its Lax matrix collide can be used to define new families of Liouville integrals (in the classical case) and new “Gaudin” algebras (in the quantum case). We will especially treat the case of total collisions, that gives rise to (a generalization of) the so called Bending flows of Kapovich and Millson. Some aspects of multi-Poisson geometry will be addressed (in the classical case). We will make use of properties of “Manin matrices ” to provide explicit generators of the Gaudin Algebras in the quantum case

    Minimum Spanning vs. Principal Trees for Structured Approximations of Multi-Dimensional Datasets

    No full text
    International audienceConstruction of graph-based approximations for multi-dimensional data point clouds is widely used in a variety of areas. Notable examples of applications of such approximators are cellular trajectory inference in single-cell data analysis, analysis of clinical trajectories from synchronic datasets, and skeletonization of images. Several methods have been proposed to construct such approximating graphs, with some based on computation of minimum spanning trees and some based on principal graphs generalizing principal curves. In this article we propose a methodology to compare and benchmark these two graph-based data approximation approaches, as well as to define their hyperparameters. The main idea is to avoid comparing graphs directly, but at first to induce clustering of the data point cloud from the graph approximation and, secondly, to use well-established methods to compare and score the data cloud partitioning induced by the graphs. In particular, mutual information-based approaches prove to be useful in this context. The induced clustering is based on decomposing a graph into non-branching segments, and then clustering the data point cloud by the nearest segment. Such a method allows efficient comparison of graph-based data approximations of arbitrary topology and complexity. The method is implemented in Python using the standard scikit-learn library which provides high speed and efficiency. As a demonstration of the methodology we analyse and compare graph-based data approximation methods using synthetic as well as real-life single cell datasets

    Trajectories, bifurcations and pseudotime in large clinical datasets: applications to myocardial infarction and diabetes data

    No full text
    International audienceLarge observational clinical datasets become increasingly available for mining associations between various disease traits and administered therapy. These datasets can be considered as representations of the landscape of all possible disease conditions, in which a concrete pathology develops through a number of stereotypical routes, characterized by 'points of no return' and 'final states' (such as lethal or recovery states). Extracting this information directly from the data remains challenging, especially in the case of synchronic (with a short-term follow up) observations. Here we suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values, through modeling the geometrical data structure as a bouquet of bifurcating clinical trajectories. The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations. The methodology allows positioning a patient on a particular clinical trajectory (pathological scenario) and characterizing the degree of progression along it with a qualitative estimate of the uncertainty of the prognosis. Overall, our pseudo-time quantification-based approach gives a possibility to apply the methods developed for dynamical disease phenotyping and illness trajectory analysis (diachronic data analysis) to synchronic observational data. We developed a tool ClinTrajan for clinical trajectory analysis implemented in Python programming language. We test the methodology in two large publicly available datasets: myocardial infarction complications and readmission of diabetic patients data
    corecore