research

Limits of Gaudin algebras, quantization of bending flows, Jucys--Murphy elements and Gelfand--Tsetlin bases

Abstract

Gaudin algebras form a family of maximal commutative subalgebras in the tensor product of nn copies of the universal enveloping algebra U(\g) of a semisimple Lie algebra \g. This family is parameterized by collections of pairwise distinct complex numbers z1,...,znz_1,...,z_n. We obtain some new commutative subalgebras in U(\g)^{\otimes n} as limit cases of Gaudin subalgebras. These commutative subalgebras turn to be related to the hamiltonians of bending flows and to the Gelfand--Tsetlin bases. We use this to prove the simplicity of spectrum in the Gaudin model for some new cases.Comment: 11 pages, references adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019