370 research outputs found
Erwin L. Hahn: A Biographical Memoir
Erwin Louis Hahn was one of the most innovative and influential physical
scientists in recent history, impacting generations of scientists through his
work in nuclear magnetic resonance (NMR), optics, and the intersection of these
two fields. Starting with his discovery of the spin echo, a phenomenon of
monumental significance and practical importance, Hahn launched a major
revolution in how we think about spin physics, with numerous implications to
follow in many other areas of science. Students of NMR and coherent optics
quickly discover that many of the key concepts and techniques in these fields
derive directly from his work.Comment: 10 pages, 5 figures; prepared for submission to the NA
Fourier Transform Multiple Quantum Nuclear Magnetic Resonance
The excitation and detection of multiple quantum transitions in systems of coupled spins offers, among other advantages, an increase in resolution over single quantum n.m.r. since the number of lines decreases as the order of the transition increases. This paper reviews the motivation for detecting multiple quantum transitions by a Fourier transform experiment and describes an experimental approach to high resolution multiple quantum spectra in dipolar systems along with results on some protonated liquid crystal systems. A simple operator formalism for the essential features of the time development is presented and some applications in progress are discussed
Understanding the magnetic resonance spectrum of nitrogen vacancy centers in an ensemble of randomly-oriented nanodiamonds
Nanodiamonds containing nitrogen vacancy (NV-) centers show promise for a
number of emerging applications including targeted in vivo imaging and
generating nuclear spin hyperpolarization for enhanced NMR spectroscopy and
imaging. Here, we develop a detailed understanding of the magnetic resonance
behavior of NV- centers in an ensemble of nanodiamonds with random crystal
orientations. Two-dimensional optically detected magnetic resonance
spectroscopy reveals the distribution of energy levels, spin populations, and
transition probabilities that give rise to a complex spectrum. We identify
overtone transitions that are inherently insensitive to crystal orientation and
give well-defined transition frequencies that access the entire nanodiamond
ensemble. These transitions may be harnessed for high-resolution imaging and
generation of nuclear spin hyperpolarization. The data are well described by
numerical simulations from the zero- to high-field regimes, including the
intermediate regime of maximum complexity. We evaluate the prospects of
nanodiamond ensembles specifically for nuclear hyperpolarization and show that
frequency-swept dynamic nuclear polarization may transfer a large amount of the
NV- center's hyperpolarization to nuclear spins by sweeping over a small region
of its spectrum.Comment: 6 pages, 5 figure
The Dynamic Structure Factor of the 1D Bose Gas near the Tonks-Girardeau Limit
While the 1D Bose gas appears to exhibit superfluid response under certain
conditions, it fails the Landau criterion according to the elementary
excitation spectrum calculated by Lieb. The apparent riddle is solved by
calculating the dynamic structure factor of the Lieb-Liniger 1D Bose gas. A
pseudopotential Hamiltonian in the fermionic representation is used to derive a
Hartree-Fock operator, which turns out to be well-behaved and local. The
Random-Phase approximation for the dynamic structure factor based on this
derivation is calculated analytically and is expected to be valid at least up
to first order in , where is the dimensionless interaction
strength of the model. The dynamic structure factor in this approximation
clearly indicates a crossover behavior from the non-superfluid Tonks to the
superfluid weakly-interacting regime, which should be observable by Bragg
scattering in current experiments.Comment: 4 pages, 2 figures misprints in formulas correcte
Nonlinear Dynamics and Nucleation Kinetics in Near-Critical Liquids
The objective of our study is to model the nonlinear behavior of a near-critical liquid following a rapid change of the temperature and/or other thermodynamic parameters (pressure, external electric or gravitational field). The thermodynamic critical point is manifested by large, strongly correlated fluctuations of the order parameter (particle density in liquid-gas systems, concentration in binary solutions) in the critical range of scales. The largest critical length scale is the correlation radius r(sub c). According to the scaling theory, r(sub c) increases as r(sub c) = r(sub 0)epsilon(exp -alpha) when the nondimensional distance epsilon = (T - T(sub c))/T(sub c) to the critical point decreases. The normal gravity alters the nature of correlated long-range fluctuations when one reaches epsilon approximately equal to 10(exp -5), and correspondingly the relaxation time, tau(r(sub c)), is approximately equal to 10(exp -3) seconds; this time is short when compared to the typical experimental time. Close to the critical point, a rapid, relatively small temperature change may perturb the thermodynamic equilibrium on many scales. The critical fluctuations have a hierarchical structure, and the relaxation involves many length and time scales. Above the critical point, in the one-phase region, we consider the relaxation of the liquid following a sudden temperature change that simultaneously violates the equilibrium on many scales. Below T(sub c), a non-equilibrium state may include a distribution of small scale phase droplets; we consider the relaxation of such a droplet following a temperature change that has made the phase of the matrix stable
Long-lived heteronuclear spin-singlet states
We report observation of long-lived spin-singlet states in a 13C-1H spin pair
at zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet
lifetimes as long as 37 seconds, about a factor of three longer than the T1
lifetime of dipole polarization in the triplet state. We also observe that the
lifetime of the singlet-triplet coherence, T2, is longer than T1. Moreover, we
demonstrate that this singlet states formed by spins of a heteronucleus and a
1H nucleus, can exhibit longer lifetimes than the respective triplet states in
systems consisting of more than two nuclear spins. Although long-lived
homonuclear spin-singlet states have been extensively studied, this is the
first experimental observation of analogous spin-singlets consisting of a
heteronucleus and a proton.Comment: 5 pages, 4 figure
Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance
Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new
regime for the measurement of nuclear spin-spin interactions free from effects
of large magnetic fields, such as truncation of terms that do not commute with
the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole
coupling, is a valuable source of spatial information in NMR, though many terms
are unobservable in high-field NMR, and the coupling averages to zero under
isotropic molecular tumbling. Under partial alignment, this information is
retained in the form of so-called residual dipolar couplings. We report zero-
to ultra-low-field NMR measurements of residual dipolar couplings in
acetonitrile-2-C aligned in stretched polyvinyl acetate gels. This
represents the first investigation of dipolar couplings as a perturbation on
the indirect spin-spin -coupling in the absence of an applied magnetic
field. As a consequence of working at zero magnetic field, we observe terms of
the dipole-dipole coupling Hamiltonian that are invisible in conventional
high-field NMR. This technique expands the capabilities of zero- to
ultra-low-field NMR and has potential applications in precision measurement of
subtle physical interactions, chemical analysis, and characterization of local
mesoscale structure in materials.Comment: 6 pages, 3 figure
- …