953 research outputs found

    An Evolving Genetic Architecture Interacts with Hill–Robertson Interference to Determine the Benefit of Sex

    Get PDF
    Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill–Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill–Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex—equilibrium mean fitness of sexual populations exceeded that of asexual populations—that did not depend on population size. We also observed a short-term advantage of sex—sexual modifier mutations readily invaded asexual populations—that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate (Ud) and recombination load (LR). These differences resulted from a combination of selection to minimize LR, which is experienced only by sexuals, and Hill–Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill–Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill–Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce Ud

    Super black hole as spinning particle: Supersymmetric baglike core

    Get PDF
    We consider particlelike solutions to supergravity based on the Kerr-Newman black hole (BH) solution. The BH singularity is regularized by means of a phase transition to a new vacuum state near the core region confining a dual gauge field. Supersymmetric BPS-saturated domain wall model is suggested which can provide this phase transition and formation the stable charged superconducting core. For spinning particle the core takes the form of thin, relativistically rotaiting disk.Comment: 9 pages, Latex, plenary talks given at the School-Workshop Praha-Spin-2001 (Prague,July 15-28,2001) and at the XXIV International Workshop on Fundamental Problems of HEP and Field Theory (IHEP, June 2001, Protvino

    Evaluating invasion risk for freshwater fishes in South Africa

    Get PDF
    South Africa, as a signatory of the Convention on Biological Diversity, has an obligation to identify, prioritise and manage invasive species and their introduction pathways. However, this requires knowledge of the introduction pathways, factors influencing establishment success, invasive potential, current distributions and ecological impacts. Objectives: To evaluate the Fish Invasiveness Screening Kit (FISK) to predict the invasion risk posed by fish species proposed for introduction into South Africa. Method: FISK assessments were compiled for species whose invasion status in South Africa was known. A Receiver operating characteristic (ROC) analysis was conducted to calibrate the FISK for South Africa. The calibrated FISK was used to evaluate the risk that three species recently proposed for importation for aquaculture could become invasive in South Africa. Results: A FISK score of 14 was identified as the threshold to delineate between species that could become invasive in South Africa and those that are unlikely to become invasive. Of the three species evaluated, Silurus glanis had a high risk of becoming invasive in South Africa, Lates calcarifer was likely to be invasive and Oncorhynchus tshawytscha was unlikely to be invasive in South Africa. Conclusion: FISK was demonstrated to be a useful risk assessment tool to evaluate the invasion risk posed by species proposed for use in aquaculture. For the large number of fish imported for the pet trade, a rapid screening assessment to flag potentially high risk species was recommended prior to a full FISK assessment for flagged species.EM201

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    A Monte-Carlo generator for statistical hadronization in high energy e+e- collisions

    Get PDF
    We present a Monte-Carlo implementation of the Statistical Hadronization Model in e+e- collisions. The physical scheme is based on the statistical hadronization of massive clusters produced by the event generator Herwig within the microcanonical ensemble. We present a preliminary comparison of several observables with measurements in e+e- collisions at the Z peak. Although a fine tuning of the model parameters is not carried out, a general good agreement between its predictions and data is found.Comment: 19 pages, 28 figures, 6 tables. v2: added sections on comparison between the Statistical Hadronization Model and the Cluster Model and on the interplay between Herwig cluster splitting algorithm and Statistical Hadronization Model predictions. Fixed typos and references added. Version accepted for publication in EPJ

    The radial BAO scale and Cosmic Shear, a new observable for Inhomogeneous Cosmologies

    Get PDF
    As an alternative explanation of the dimming of distant supernovae it has recently been advocated that we live in a special place in the Universe near the centre of a large spherical void described by a Lemaitre-Tolman-Bondi (LTB) metric. In this scenario, the Universe is no longer homogeneous and isotropic, and the apparent late time acceleration is actually a consequence of spatial gradients. We propose in this paper a new observable, the normalized cosmic shear, written in terms of directly observable quantities, and calculable in arbitrary inhomogeneous cosmologies. This will allow future surveys to determine whether we live in a homogeneous universe or not. In this paper we also update our previous observational constraints from geometrical measures of the background cosmology. We include the Union Supernovae data set of 307 Type Ia supernovae, the CMB acoustic scale and the first measurement of the radial baryon acoustic oscillation scale. Even though the new data sets are significantly more constraining, LTB models -- albeit with slightly larger voids -- are still in excellent agreement with observations, at chi^2/d.o.f. = 307.7/(310-4)=1.005. Together with the paper we also publish the updated easyLTB code used for calculating the models and for comparing them to the observations.Comment: 18 pages, 8 figures, the code can be downloaded at http://www.phys.au.dk/~haugboel/software.shtm

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α′\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    Multi-parameter Entanglement in Quantum Interferometry

    Get PDF
    The role of multi-parameter entanglement in quantum interference from collinear type-II spontaneous parametric down-conversion is explored using a variety of aperture shapes and sizes, in regimes of both ultrafast and continuous-wave pumping. We have developed and experimentally verified a theory of down-conversion which considers a quantum state that can be concurrently entangled in frequency, wavevector, and polarization. In particular, we demonstrate deviations from the familiar triangular interference dip, such as asymmetry and peaking. These findings improve our capacity to control the quantum state produced by spontaneous parametric down-conversion, and should prove useful to those pursuing the many proposed applications of down-converted light.Comment: submitted to Physical Review

    Cosmological String Gas on Orbifolds

    Get PDF
    It has long been known that strings wound around incontractible cycles can play a vital role in cosmology. In particular, in a spacetime with toroidal spatial hypersurfaces, the dynamics of the winding modes may help yield three large spatial dimensions. However, toroidal compactifications are phenomenologically unrealistic. In this paper we therefore take a first step toward extending these cosmological considerations to DD-dimensional toroidal orbifolds. We use numerical simulation to study the timescales over which "pseudo-wound" strings unwind on these orbifolds with trivial fundamental group. We show that pseudo-wound strings can persist for many ``Hubble times'' in some of these spaces, suggesting that they may affect the dynamics in the same way as genuinely wound strings. We also outline some possible extensions that include higher-dimensional wrapped branes.Comment: 14 pages, 8 eps fig

    Evaluating invasion risk for freshwater fishes

    Get PDF
    Background: South Africa, as a signatory of the Convention on Biological Diversity, has an obligation to identify, prioritise and manage invasive species and their introduction pathways. However, this requires knowledge of the introduction pathways, factors influencing establishment success, invasive potential, current distributions and ecological impacts. Objectives: To evaluate the Fish Invasiveness Screening Kit (FISK) to predict the invasion risk posed by fish species proposed for introduction into South Africa. Method: FISK assessments were compiled for species whose invasion status in South Africa was known. A Receiver operating characteristic (ROC) analysis was conducted to calibrate the FISK for South Africa. The calibrated FISK was used to evaluate the risk that three species recently proposed for importation for aquaculture could become invasive in South Africa. Results: A FISK score of 14 was identified as the threshold to delineate between species that could become invasive in South Africa and those that are unlikely to become invasive. Of the three species evaluated, Silurus glanis had a high risk of becoming invasive in South Africa, Lates calcarifer was likely to be invasive and Oncorhynchus tshawytscha was unlikely to be invasive in South Africa. Conclusion: FISK was demonstrated to be a useful risk assessment tool to evaluate the invasion risk posed by species proposed for use in aquaculture. For the large number of fish imported for the pet trade, a rapid screening assessment to flag potentially high risk species was recommended prior to a full FISK assessment for flagged species
    • …
    corecore