10 research outputs found

    Mechanical construction and installation of the ATLAS tile calorimeter

    Get PDF
    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

    Benefits and Harms of Citrate Locking Solutions for Hemodialysis Catheters: A Systematic Review and Meta-Analysis

    No full text
    Background: Citrate has theoretical advantages over heparin for locking hemodialysis central venous catheters (CVCs), but the comparative effectiveness of these agents is not clear. Objectives: 1) To compare the benefits and harms of citrate versus heparin locking solutions among patients undergoing hemodialysis through CVCs; 2) to appraise methodological quality of the supporting evidence. Data sources: CENTRAL, MEDLINE, EMBASE, CINAHL, ISI Web of Science, and nephrology conference abstracts. Study eligibility, participants, and interventions: We included randomized, parallel arm clinical trials that enrolled adult patients (>18 years) receiving chronic hemodialysis through CVCs using a citrate locking solution. We excluded studies in which citrate was combined with other agents, such as antibiotics. Appraisal and synthesis methods: We used the GRADE approach to systematic reviews and quality appraisal. Two reviewers performed data extraction independently and in duplicate. We pooled count data using generic inverse variance with random-effects models, and used fixed-effect models when only two studies were available for pooling. Subgroups included low (≤5%) vs. higher (≥30%) citrate. Results: We screened 600 citations. Forty-one proceeded to full-text screen; 5 met inclusion criteria. Studies included between 19 and 291 participants (Median N = 61) followed for a total of 174.6 catheter-years; 2 were multi-centred trials. Three studies assessed all-cause mortality; the pooled relative risk for death was 0.71 (95% CI = 0.42–1.24; p = 0.21; I 2 = 0%). The rate ratio for bacteremic episodes was 0.54 (95% CI = 0.23–1.29; p = 0.16; I 2 = 65%) while the rate ratio for bleeding was 0.48 (95% CI = 0.3–0.75; p = 0.001;I I 2 = 5%). Rates of catheter exchange/replacement, all-cause hospitalization and in-situ thrombolysis were not significantly different between groups in any of the pooled analyses. Risk of bias within pooled studies was low. Limitations: Outcome definitions varied across studies. Imprecision due to small sample sizes and low event rates reduce our overall confidence in the pooled effect estimates. Implications: Benefits and harms of citrate vs. heparin locking solutions remain unclear; larger studies and standardization of outcome measurement and reporting are warranted. Trial registration: Protocol Registration Number: CRD4201300478

    Benefits and harms of citrate locking solutions for hemodialysis catheters: a systematic review and meta-analysis

    No full text
    Abstract Background Citrate has theoretical advantages over heparin for locking hemodialysis central venous catheters (CVCs), but the comparative effectiveness of these agents is not clear. Objectives 1) To compare the benefits and harms of citrate versus heparin locking solutions among patients undergoing hemodialysis through CVCs; 2) to appraise methodological quality of the supporting evidence. Data sources CENTRAL, MEDLINE, EMBASE, CINAHL, ISI Web of Science, and nephrology conference abstracts. Study eligibility, participants, and interventions We included randomized, parallel arm clinical trials that enrolled adult patients (>18 years) receiving chronic hemodialysis through CVCs using a citrate locking solution. We excluded studies in which citrate was combined with other agents, such as antibiotics. Appraisal and synthesis methods We used the GRADE approach to systematic reviews and quality appraisal. Two reviewers performed data extraction independently and in duplicate. We pooled count data using generic inverse variance with random-effects models, and used fixed-effect models when only two studies were available for pooling. Subgroups included low (≤5%) vs. higher (≥30%) citrate. Results We screened 600 citations. Forty-one proceeded to full-text screen; 5 met inclusion criteria. Studies included between 19 and 291 participants (Median N = 61) followed for a total of 174.6 catheter-years; 2 were multi-centred trials. Three studies assessed all-cause mortality; the pooled relative risk for death was 0.71 (95% CI = 0.42-1.24; p = 0.21; I2 = 0%). The rate ratio for bacteremic episodes was 0.54 (95% CI = 0.23-1.29; p = 0.16; I2 = 65%) while the rate ratio for bleeding was 0.48 (95% CI = 0.3-0.75; p = 0.001;I I2 = 5%). Rates of catheter exchange/replacement, all-cause hospitalization and in-situ thrombolysis were not significantly different between groups in any of the pooled analyses. Risk of bias within pooled studies was low. Limitations Outcome definitions varied across studies. Imprecision due to small sample sizes and low event rates reduce our overall confidence in the pooled effect estimates. Implications Benefits and harms of citrate vs. heparin locking solutions remain unclear; larger studies and standardization of outcome measurement and reporting are warranted. Trial registration Protocol Registration Number: CRD4201300478

    Mechanical construction and installation of the ATLAS tile calorimeter

    No full text
    This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated structure to form the absorber of the sampling calorimeter.Following instrumentation and testing, which is described elsewhere, themodules were installed in the ATLAS cavern with a remarkable accuracy fora structure of this size and weight

    Mechanical construction and installation of the ATLAS tile calorimeter

    No full text
    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight. © CERN 2013 for the benefit of the ATLAS collaboration

    Mechanical construction and installation of the ATLAS tile calorimeter

    No full text

    ATLAS

    No full text
    % ATLAS \\ \\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and Bs0 B ^0 _{s} -mixing. \\ \\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial field, electromagnetic and hadronic calorimeters outside the solenoid and in the forward regions, and barrel and end-cap air-core-toroid muon spectrometers. The precision measurements for photons, electrons, muons and hadrons, and identification of photons, electrons, muons, τ\tau-leptons and b-quark jets are performed over η| \eta | < 2.5. The complete hadronic energy measurement extends over η| \eta | < 4.7. \\ \\The inner tracking detector consists of straw drift tubes interleaved with transition radiators for robust pattern recognition and electron identification, and several layers of semiconductor strip and pixel detectors providing high-precision space points. \\ \\The e.m. calorimeter is a lead-Liquid Argon sampling calorimeter with an integrated preshower detector and a presampler layer immediately behind the cryostat wall for energy recovery. The end-cap hadronic calorimeters also use Liquid Argon technology, with copper absorber plates. The end-cap cryostats house the e.m., hadronic and forward calorimeters (tungsten-Liquid Argon sampling). The barrel hadronic calorimeter is an iron-scintillating tile sampling calorimeter with longitudinal tile geometry. \\ \\Air-core toroids are used for the muon spectrometer. Eight superconducting coils with warm voussoirs are used in the barrel region complemented with superconducting end-cap toroids in the forward regions. The toroids will be instrumented with Monitored Drift Tubes (Cathode Strip Chambers at large rapidity where there are high radiation levels). The muon trigger and second coordinate measurement for muon tracks are provide

    The ATLAS Experiment at the CERN Large Hadron Collider

    No full text
    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented
    corecore