177 research outputs found
Genetic Correlates of Brain Aging on MRI and Cognitive Test Measures: A Genome-Wide Association and Linkage Analysis in the Framingham Study
BACKGROUND: Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. METHODS: A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores. RESULTS: The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1). CONCLUSION: Our results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.National Institutes of Health National Center for Research Resources Shared Instrumentation grant (ISI0RR163736-01A1); National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); National Institute of Aging (5R01-AG08122, 5R01-AG16495); National Institute of Neurological Disorders and Stroke (5R01-NS17950
Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases
Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles
A kalpainok szerkezete, működése, élettani és kórtani szerepe = Structure and function of calpains, physiological and pathological roles
Calpains, the intracellular calcium-activated regulatory proteases are at crossroads of cellular pathways. Our aim has been to unravel the molecular interactions underlying function, both physiological and pathological. In resting cells calpains are inactive, but they are switched on by a rise in calcium concentration. We described the intramolecular structural changes accompanying these transitions. Mammalian calpain have a specific endogenous inhibitor protein, calpastatin. Based on the interaction of calpain and calpastatin, we developed a synthetic, membrane-permeable activator for calpains in intact cells. With this unique reactant, we succeded in activating calpain in living nerve cells, without a gross rise in calcium concentration. | A kalpainok, az intracelluláris kalcium aktivált szabályozó proteázok, sok sejtszintű folyamatban részt vesznek. Célul tűztük ki, hogy feltárjuk az enzim molekuláris kölcsönhatásait, ezáltal mind fiziológiás és patológiás funkcióját. A nyugalmi sejtekben a kalpain inaktív, de a kalcium koncentráció növekedésének hatására aktívvá válik. Munkánk során leírtuk ezen átalakulás intramolekuláris szerkezeti vonatkozásait. Az emlős kalpainok specifikus endogén inhibítora a kalpasztain. A kalpain-kalpasztatin kölcsönhatáson alapulva kifejlesztettünk egy intakt sejtekben is működő szintetikus, membrán-permeábilis aktivátort. Ennek az egyedülálló reaktánsnak a segítségével, képesek vagyunk élő idegsejtekben a kalpain aktiválására, az intracelluláris kalcium koncentráció megemelése nélkül
Theileria highjacks JNK2 into a complex with the macroschizont GPI-anchored surface protein p104.
Constitutive JNK activity characterizes bovine T and B cells infected with Theileria parva, and B cells and macrophages infected with T. annulata. Here, we show that T. annulata infection of macrophages manipulates JNK activation by recruiting JNK2 and not JNK1 to the parasite surface, whereas JNK1 is found predominantly in the host cell nucleus. At the parasite's surface JNK2 forms a complex with p104 a GPI-anchored T. annulata plasma membrane protein. Sequestration of JNK2 depended on PKA-mediated phosphorylation of a JNK-binding motif common to T. parva and a cell penetrating peptide harbouring the conserved p104 JNK-binding motif competitively ablated binding, whereupon liberated JNK2 became ubiquitinated and degraded. Cytosolic sequestration of JNK2 suppressed small mitochondrial ARF-mediated autophagy, whereas it sustained nuclear JNK1 levels, c-Jun phosphorylation and matrigel traversal. Therefore, T. annulata sequestration of JNK2 contributes to both survival and dissemination of Theileria-transformed macrophages
Structural basis of Ribosomal S6 Kinase 1 (RSK1) inhibition by S100B Protein: modulation of the Extracellular Signal-regulated Kinase (ERK) signaling cascade in a calcium-dependent way.
Mitogen-activated protein kinases (MAPK) promote MAPK activated protein kinase (MAPKAPK) activation. In the MAPK pathway responsible to cell growth, ERK2 initiates the first phosphorylation event on RSK1, which is inhibited by calcium-binding S100 proteins in malignant melanomas. Here we present a detailed in vitro biochemical and structural characterization of the S100B-RSK1 interaction. The calcium-dependent binding of S100B to the calcium/calmodulin dependent protein kinase (CaMK)-type domain of RSK1 is reminiscent to the better known binding of calmodulin to CaMKII. Although S100B-RSK1 and the calmodulin-CAMKII system are clearly distinct functionally, they demonstrate how unrelated intracellular Ca2+ binding proteins could influence the activity of CaMK domain containing protein kinases. Our crystallographic, small angle X-ray scattering (SAXS) and NMR analysis revealed that S100B forms a ''fuzzy'' complex with RSK1 peptide ligands. Based on fast-kinetics experiments we conclude that the binding involves both conformation selection and induced fit steps. Knowledge of the structural basis of this interaction could facilitate therapeutic targeting of melanomas
Bone mineral density and the risk of incident dementia:A meta-analysis
Background: It is not known whether bone mineral density (BMD) measured at baseline or as the rate of decline prior to baseline (prior bone loss) is a stronger predictor of incident dementia or Alzheimer's disease (AD). Methods:We performed a meta-analysis of three longitudinal studies, the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Rush Memory and Aging Project (MAP), modeling the time to diagnosis of dementia as a function of BMD measures accounting for covariates. We included individuals with one or two BMD assessments, aged ≥60 years, and free of dementia at baseline with follow-up available. BMD was measured at the hip femoral neck using dual-energy X-ray absorptiometry (DXA), or at the heel calcaneus using quantitative ultrasound to calculate estimated BMD (eBMD). BMD at study baseline (“baseline BMD”) and annualized percentage change in BMD prior to baseline (“prior bone loss”) were included as continuous measures. The primary outcome was incident dementia diagnosis within 10 years of baseline, and incident AD was a secondary outcome. Baseline covariates included age, sex, body mass index, ApoE4 genotype, and education. Results: The combined sample size across all three studies was 4431 with 606 incident dementia diagnoses, 498 of which were AD. A meta-analysis of baseline BMD across three studies showed higher BMD to have a significant protective association with incident dementia with a hazard ratio of 0.47 (95% CI: 0.23–0.96; p = 0.038) per increase in g/cm2, or 0.91 (95% CI: 0.84–0.995) per standard deviation increase. We observed a significant association between prior bone loss and incident dementia with a hazard ratio of 1.30 (95% CI: 1.12–1.51; p < 0.001) per percent increase in prior bone loss only in the FHS cohort. Conclusions: Baseline BMD but not prior bone loss was associated with incident dementia in a meta-analysis across three studies.</p
Jelfeldolgozás a sejtben: a kalpain és protein kináz rendszerek és kölcsönhatásaik = Intracellular signal processing: the calpain and protein kinase/phosphatase systems, and their interactions
1. Bizonyítottuk, hogy a kalpain B aktív és inaktív formája foszforilálható PKA, ERK1 és ERK2 kinázokkal, azonosítottuk az in vitro foszforilációs helyeket, és meghatároztuk a foszforilált fehérje megváltozott enzimológiai paramétereit. 2. Előállítottuk az összes Drosophila kalpain elleni antitestet. 3. Kidolgoztunk egy háromdimenziós elektroforetikus eljáráson alapuló, in vivo szubsztrát azonosításra használható módszert, amelynek segítségével számos kalpain szubsztrátot azonosítottunk. 4. Kifejlesztettünk egy sejtpenetráns, szintetikus kalpain szubsztrátot, amely a jelenleg ismert szubsztrátok közül a legérzékenyebb. 5. Kifejlesztettünk egy sejtpenetráns, szintetikus kalpain-aktiváló peptid párt, amely a kalpainok sejten belüli, calcium-mentes és specifikus aktiválására képes. 6. Kimutattuk, hogy patkány hippokampális agyszeletekben a kalpainok specifikus aktiválása az alap-ingerlékenység és az LTP szignifikáns növekedését idézi elő. 7. Kalpain A, kalpain B és kalpain A/B mutáns Drosophila vonalakat állítottunk elő. Elemeztük a fehérjék expresszióját vad és mutáns vonalakban, továbbá vizsgáltuk a fenotípusra gyakorolt hatásukat. A kalpain B fehérjéről megállapítottuk, hogy fontos szerepet játszik a határsejtek vándorlásában. 8. Drosophila kalpain interferencia vonalakat állítottunk elő: a kalpain B csendesített vonalak egyedei csökkent fertilitásúak voltak, a kettős mutánsok szintetikus szemiletalitást mutattak. A kalpain C hiánya letalitást okozott. | 1. We provided evidence that both the active and inactive forms of calpain B can be phosphorylated by PKA, ERK1 and ERK2. Phosphorylation sites were localized and the enzymological parameters of the modified enzymes were determined. 2. Antibodies have been generated against all forms of Drosophila calpain. 3. A new three-dimensional electrophoresis method has been developed to identify calpain substrates in vivo. Several novel substrates have been identified. 4. A synthetic, cell-permeable synthetic calpain susbtrate has been developed. This compound is more sensitive to the enzyme than any other known calpain substrate. 5. A peptide pair capable of calpain activation have also been developed. These sythetic peptides can penetrate cells and activate the enzyme in a calcium-independent manner. 6. It has been shown that specific activation of calpain(s) leads to a significantly incerased basal excitability and long-term potentiation (LTP) in rat hippocampal slices. 7. Drosophila lines mutant in calpain A, calpain B and calpain A/B have been generated. The effect of changes in calpain expression on phenotype was tested and it was found that calpain B plays a major role in regulating the migration of border cells. 8. Interference strains of Drosophila have also been generated. We found that silencing calpain B causes reduced fertility whereas double mutation causes synthetic semilethality. Calpain C deficit was found to be lethal
- …