7 research outputs found

    Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human replication protein A.

    Get PDF
    The RecQ helicases are involved in several aspects of DNA metabolism. Five members of the RecQ family have been found in humans, but only two of them have been carefully characterized, BLM and WRN. In this work, we describe the enzymatic characterization of RECQ1. The helicase has 3' to 5' polarity, cannot start the unwinding from a blunt-ended terminus, and needs a 3'-single-stranded DNA tail longer than 10 nucleotides to open the substrate. However, it was also able to unwind a blunt-ended duplex DNA with a "bubble" of 25 nucleotides in the middle, as previously observed for WRN and BLM. We show that only short DNA duplexes (30 bp) can be unwound by RECQ1 alone, but the addition of human replication protein A (hRPA) increases the processivity of the enzyme (100 bp). Our studies done with Escherichia coli single-strand binding protein (SSB) indicate that the helicase activity of RECQ1 is specifically stimulated by hRPA. This finding suggests that RECQ1 and hRPA may interact also in vivo and function together in DNA metabolism. Comparison of the present results with previous studies on WRN and BLM provides novel insight into the role of the N- and C-terminal domains of these helicases in determining their substrate specificity and in their interaction with hRPA

    DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR.

    Get PDF
    Despite reductions in mortality from the use of highly active antiretroviral therapy (HAART), the presence of latent or transcriptionally silent proviruses prevents HIV cure/eradication. We have previously reported that DNA-dependent protein kinase (DNA-PK) facilitates HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited at HIV LTR. In this study, using different cell lines and peripheral blood mononuclear cells (PBMCs) of HIV-infected patients, we found that DNA-PK stimulates HIV transcription at several stages, including initiation, pause-release and elongation. We are reporting for the first time that DNA-PK increases phosphorylation of RNAP II C-terminal domain (CTD) at serine 5 (Ser5) and serine 2 (Ser2) by directly catalyzing phosphorylation and by augmenting the recruitment of the positive transcription elongation factor (P-TEFb) at HIV LTR. Our findings suggest that DNA-PK expedites the establishment of euchromatin structure at HIV LTR. DNA-PK inhibition/knockdown leads to the severe impairment of HIV replication and reactivation of latent HIV provirus. DNA-PK promotes the recruitment of Tripartite motif-containing 28 (TRIM28) at LTR and assists the release of paused RNAP II through TRIM28 phosphorylation. These results provide the mechanisms through which DNA-PK controls the HIV gene expression and, likely, can be extended to cellular gene expression, including during cell malignancy, where the role of DNA-PK has been well-established

    DNA-PK Inhibition Potently Represses HIV Transcription and Replication

    No full text
    DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. We reported DNA-PK facilitated HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited to HIV LTR and identified potential DNA-PK targets within the carboxyl terminal domain (CTD) of RNAP II through kinase assays. In our current study, DNA-PK inhibition via highly specific small molecule inhibitors replicated the shRNA-mediated abrogation of both HIV transcription and replication in latently infected myeloid and lymphoid cell lines, the main cell types targeted by HIV. These inhibitors also impaired HIV replication in primary CD4+ T-cells. Pre-treatment of the HIV-infected cell lines with the DNA-PK inhibitors also resulted in severe impairment of the phosphorylation of the serine 2 and serine 5 of the RNAP II CTD upon stimulation. Chromatin immunoprecipitation (ChIP) analysis showed the inhibition of DNA-PK activity led to the establishment of transcriptionally repressive heterochromatin structures at the HIV LTR. These findings confirm the important role of DNA-PK in HIV transcription and replication and excitingly we have identified two strong inhibitors of DNA-PK that successfully limit the reactivation of latently HIV-infected cells. In light of the fact that these transcriptionally silent proviruses are well protected from both the immune system and HAART regimens, which prevents complete eradication of the virus, we present strong evidence for the inclusion of DNA-PK inhibitors as supplements to HAART regimens, to enhance their restriction of HIV replication

    Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR.

    No full text
    AbstractCocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication

    Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    No full text
    AbstractCocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication

    Abstracts of Tanzania Health Summit 2020

    No full text
    This book contains the abstracts of the papers/posters presented at the Tanzania Health Summit 2020 (THS-2020) Organized by the Ministry of Health Community Development, Gender, Elderly and Children (MoHCDGEC); President Office Regional Administration and Local Government (PORALG); Ministry of Health, Social Welfare, Elderly, Gender, and Children Zanzibar; Association of Private Health Facilities in Tanzania (APHFTA); National Muslim Council of Tanzania (BAKWATA); Christian Social Services Commission (CSSC); & Tindwa Medical and Health Services (TMHS) held on 25–26 November 2020. The Tanzania Health Summit is the annual largest healthcare platform in Tanzania that attracts more than 1000 participants, national and international experts, from policymakers, health researchers, public health professionals, health insurers, medical doctors, nurses, pharmacists, private health investors, supply chain experts, and the civil society. During the three-day summit, stakeholders and decision-makers from every field in healthcare work together to find solutions to the country’s and regional health challenges and set the agenda for a healthier future. Summit Title: Tanzania Health SummitSummit Acronym: THS-2020Summit Date: 25–26 November 2020Summit Location: St. Gasper Hotel and Conference Centre in Dodoma, TanzaniaSummit Organizers: Ministry of Health Community Development, Gender, Elderly and Children (MoHCDGEC); President Office Regional Administration and Local Government (PORALG); Ministry of Health, Social Welfare, Elderly, Gender and Children Zanzibar; Association of Private Health Facilities in Tanzania (APHFTA); National Muslim Council of Tanzania (BAKWATA); Christian Social Services Commission (CSSC); & Tindwa Medical and Health Services (TMHS)
    corecore