6,607 research outputs found

    Experimental analysis of multistatic multiband radar signatures of wind turbines

    Get PDF
    This study presents the analysis of recent experimental data acquired using two radar systems at S-band and X-band to measure simultaneous monostatic and bistatic signatures of operational wind turbines near Shrivenham, UK. Bistatic and multistatic radars are a potential approach to mitigate the adverse effects of wind farm clutter on the performance of radar systems, which is a well-known problem for air traffic control and air defence radar. This analysis compares the simultaneous monostatic and bistatic micro-Doppler signatures of two operational turbines and investigates the key differences at bistatic angles up to 23°. The variations of the signature with different polarisations, namely vertical transmitted and vertical received and horizontal transmitted and horizontal received, are also discussed

    Determination of maximal Gaussian entanglement achievable by feedback-controlled dynamics

    Get PDF
    We determine a general upper bound for the steady-state entanglement achievable by continuous feedback for systems of any number of bosonic degrees of freedom. We apply such a bound to the specific case of parametric interactions - the most common practical way to generate entanglement in quantum optics - and single out optimal feedback strategies that achieve the maximal entanglement. We also consider the case of feedback schemes entirely restricted to local operations and compare their performance to the optimal, generally nonlocal, schemes.Comment: 4 pages. Published versio

    Entanglement creation and distribution on a graph of exchange-coupled qutrits

    Full text link
    We propose a protocol that allows both the creation and distribution of entanglement, resulting in two distant parties (Alice and Bob) conclusively sharing a bipartite Bell State. The system considered is a graph of three-level objects ("qutrits") coupled by SU(3) exchange operators. The protocol begins with a third party (Charlie) encoding two lattice sites in unentangled states, and allowing unitary evolution under time. Alice and Bob perform a projective measurement on their respective qutrits at a given time, and obtain a maximally-entangled Bell state with a certain probablility. We also consider two further protocols, one based on simple repetition and the other based on successive measurements and conditional resetting, and show that the cumulative probability of creating a Bell state between Alice and Bob tends to unity.Comment: Added seven references, clarified argument for eqn (16

    On the optimal feedback control of linear quantum systems in the presence of thermal noise

    Full text link
    We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to non-classical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.Comment: 10 pages, 2 figures. v2: minor changes to the letter; better explanation of the necessary and sufficient conditions to achieve the bounds (in the supplemental material); v3: title changed; comparison between optimal general-dyne strategy and homodyne strategy is discussed; supplemental material included in the manuscript and few references added. v4: published versio

    Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques

    Full text link
    Detrended fluctuation analysis (DFA) and detrended moving average (DMA) are two scaling analysis methods designed to quantify correlations in noisy non-stationary signals. We systematically study the performance of different variants of the DMA method when applied to artificially generated long-range power-law correlated signals with an {\it a-priori} known scaling exponent α0\alpha_{0} and compare them with the DFA method. We find that the scaling results obtained from different variants of the DMA method strongly depend on the type of the moving average filter. Further, we investigate the optimal scaling regime where the DFA and DMA methods accurately quantify the scaling exponent α0\alpha_{0}, and how this regime depends on the correlations in the signal. Finally, we develop a three-dimensional representation to determine how the stability of the scaling curves obtained from the DFA and DMA methods depends on the scale of analysis, the order of detrending, and the order of the moving average we use, as well as on the type of correlations in the signal.Comment: 15 pages, 16 figure

    Detrended fluctuation analysis for fractals and multifractals in higher dimensions

    Full text link
    One-dimensional detrended fluctuation analysis (1D DFA) and multifractal detrended fluctuation analysis (1D MF-DFA) are widely used in the scaling analysis of fractal and multifractal time series because of being accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MF-DFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces including fractional Brownian surfaces and multifractal surfaces. The two-dimensional MF-DFA is also adopted to analyze two images from nature and experiment and nice scaling laws are unraveled.Comment: 7 Revtex pages inluding 11 eps figure

    Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence

    Full text link
    We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. This will lead us to show that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/WW states of continuous variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the WW states of three qubits. We finally consider the action of decoherence on tripartite entangled Gaussian states, studying the decay of the residual contangle. The GHZ/WW states are shown to be maximally robust under both losses and thermal noise.Comment: 20 pages, 5 figures. (v2) References updated, published versio

    Magnetic stress as a driving force of structural distortions: the case of CrN

    Full text link
    We show that the observed transition from rocksalt to orthorhombic Pnma_{nma} symmetry in CrN can be understood in terms of stress anisotropy. Using local spin density functional theory, we find that the imbalance between stress stored in spin-paired and spin-unpaired Cr nearest neighbors causes the rocksalt structure to be unstable against distortions and justifies the observed antiferromagnetic ordering. This stress has a purely magnetic origin, and may be important in any system where the coupling between spin ordering and structure is strong.Comment: 4 pages (two columns) 4 figure
    • …
    corecore