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Abstract

This paper presents the analysis of recent experimental data acquired using two radar systems at S-

band and X-band to measure simultaneous monostatic and bistatic signatures of operational wind

turbines near Shrivenham, UK. Bistatic and multistatic radars are a potential approach to mitigate the

adverse effects of wind farm clutter on the performance of radar systems, which is a well-known

problem for Air Traffic Control and Air Defence radar. This analysis compares the simultaneous

monostatic and bistatic micro-Doppler signatures of two operational turbines and investigates the key

differences at bistatic angles up to 23°. The variations of the signature with different polarisations,

namely VV and HH, are also discussed.

1. Introduction

The generation of electricity from renewable and environmental-friendly sources is a key priority of

the United Kingdom and many other countries in order to reduce the dependence on fossil fuels and

the production of greenhouse gases. Onshore and offshore wind energy is expected to greatly

contribute towards the goal of generating 15% of energy from renewable sources by 2020 which the

UK Government has set [1]. RenewableUK, the UK leading renewable energy trade association, has

estimated that at the end of 2014 around 17 TWh (Terawatt-hours) of electricity were generated

annually by the total onshore installed capacity in the UK, equivalent to the consumption in excess of 4

million households [2]. It is also reported that a single 2.5 MW turbine can generate enough electricity

to power 1400 households in a year, and this is equivalent to running an average computer for over

2000 years or making 230 million cups of tea [2].

However, it is well known that wind turbines and wind farms can have a detrimental effect on the

performance of radar systems, in particular those used for Air Traffic Control (ATC) to provide

services to civilian aircraft and manage their traffic, and for Air Defence (AD) to detect and localise

possible unauthorised and hostile aircraft. As a result, the development of wind turbines and wind

farms at many suitable sites across the UK is delayed or completely blocked because of objections
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raised by military and civilian bodies. It is reported that more than half of wind farm developments in

the UK have faced objections from the aviation sector and from the Ministry of Defence (MoD), and

that objections due to radar issues accounted for approximately 12 GW of electricity generation

capacity in 2013 [3-4]. The effects of wind farms on radar systems that are located within the line of

sight of the radar include the increase of undesired returns that may generate false alarms, the

reduction of probability of target detection in the area above and around wind farms (desensitisation of

the radar), and the consequent loss of plotting and tracking capabilities in the affected area [5]. This is

related to the large radar cross section (RCS) of the turbines (as much as 55 dBsm of peak RCS) in

comparison with typical air targets (e.g. around 0-10 dBsm for a small fighter jet), as well as to the

Doppler shifts created by the fast-moving tips of the turbine blades which can be comparable to those

generated by slow moving air targets such as helicopters, landing commercial aircrafts, and small

aircrafts [5].

Different mitigation techniques have been proposed to cope with the aforementioned effects. A good

summary of such techniques can be found in [6]

[7]. These techniques include actions on

the wind farm design, such as relocation, terrain screening, rearranging the position of the turbines to

minimize their effect on radar systems, reduction of the height of the turbines, reshaping of turbine

parts to avoid specular radar reflections, and use of radar absorbing materials (RAM) to reduce the

overall RCS. These techniques can be effective, but their suitability must be balanced with related

additional costs for the wind farm development and with the possible reduction of the electrical

capacity of the farm. Other mitigation techniques aim at improving the radar affected by the turbine,

for instance adapting antenna beams, tilt, and side-lobes to minimize the return from wind farms,

improving the detection and tracking algorithms to filter out the negative effect of wind farms, or using

a multiple sensor approach with an in-fill radar that complements the coverage of the primary radar.

Significant research has been carried out to model accurately and with computationally efficient

processing the RCS and Doppler signatures of wind turbines [8-10]. The use of scaled models of

realistic turbines for controlled measurements in laboratory has also been reported [11-12], showing

the effect of different rotation speeds and yaw angles on the micro-Doppler signatures and analysing

the statistics of such signatures as they fluctuate. The impact of wind farm clutter on real radar systems

and their performance has been also investigated, for instance on Ground Moving Target Indication

(GMTI) for targets within the wind turbine area [13], on weather radar stations [14], on maritime radar

systems [15], and on the detection and tracking capabilities of unauthorized aircraft entering a

restricted zone [16]. Novel wind turbine designs have been proposed to replace the common three-

bladed horizontal axis turbines, such as vertical axis turbines, simulated and tested with a scaled model



in [17], and wind lens prototypes have been developed and measured experimentally in [18]. The use

of partial reshaping of the nacelle together with RAM to reduce the overall RCS of turbines has been

considered in [19], also evaluating the increased cost due to the absorbing material on the blades,

whereas in [20] the integration of RAM and lighting protection systems is discussed through numerical

simulations that model the application of the absorber onto different sections and areas of the blades.

Additional digital signal processing algorithms have been proposed to mitigate the effects of wind

farm clutter on radar signals and their performance [21-22]. Bistatic and multistatic radar systems have

also been mentioned as a solution to address the wind farm clutter issue [7]. By exploiting multistatic

geometries, these systems may offer additional degrees of freedom over conventional monostatic radar

and can potentially provide advantages in dealing with wind farm clutter, such as a lower Doppler

spread, multi-perspective information on targets, and lower radar clutter-to-target cross section.

In general little information has been published on actual experiments involving operating wind farms

and radar systems. A comprehensive experimental campaign aimed at characterizing the monostatic

RCS and Doppler signature of a wind farm at four radar bands, namely L, S, C and X, was performed

in the past by the US Air Force Research Laboratory [23-24]. The experimental data collected showed

very good agreement with the data generated through numerical simulations using an accurate CAD

model of the turbines. In [25] the authors show additional experimental data with wind turbine

signatures recorded by a weather surveillance Doppler radar, and present interpolation techniques to

mask the clutter at the expense of spatial resolution.

To the best of our knowledge very little prior literature exists on experimental multistatic wind farm

clutter. In this paper we show simultaneous monostatic and bistatic signatures of operational wind

turbines as collected in May 2015 with an S-band pulsed radar and an X-band CW radar, developed

respectively at University College London and Cranfield University, Shrivenham. For each recording,

the possibility of comparing simultaneous monostatic and bistatic signatures with two different bistatic

angles, and simultaneous multiband signatures makes these data significantly novel. Preliminary data

collected in January 2015 were shown in our previous work in [26] where an empirical comparison

between monostatic and bistatic data at narrow bistatic angle (approximately 6.5°) was presented. This

paper expands the past work analysing a new set of data collected with wider bistatic angles (13° up to

23°) to characterize the wind turbine clutter as function of such angle. More radar nodes were also

deployed for this experiment, namely three rather than two at S-band and two rather than one at X-

band, allowing further comparisons between datasets. Some quantitative parameters such as the overall

Doppler bandwidth and the average Doppler power across ranges of Doppler bins have also been

extracted in this study for a more quantitative comparison of monostatic vs bistatic data.



This paper is organised as follows. Section 2 presents the experimental setup of the measurements and

the two radar systems used to collect the data. Section 3 describes the analysis of the data with a

comparison of monostatic ad simultaneous bistatic spectrograms obtained at different polarizations and

bistatic angles, as well as at both S-band and X-band. Section 4 concludes the paper and discusses

future work.

2. Radar systems and measurement setup

The data analysed in this work have been collected using two radar systems in a joint experiment

between University College London and Cranfield University. The first system is the S-band

multistatic pulsed coherent system NetRAD. NetRAD has been developed over a number of years at

University College London [27] and has provided novel results in different research fields such as sea

clutter characterisation and human micro-Doppler [28-30]. NetRAD has three distinct but essentially

identical nodes, one of which is used as a monostatic transceiver (node 3) and the other two as receive-

only nodes (node 1 and node 2). For this work, the transmitted power was 200 mW, the frequency 2.4

GHz, the the bandwidth of the linear chirp that modulates the pulse 45 MHz, the

pulse repetition frequency (PRF) 5 kHz, and the length of each recording 10 s. Three identical

antennas with a 10° x 10° beam-width and a 24 dBi gain were deployed. The second radar system is

the Cranfield University X-band continuous wave (CW) radar. The radar consists of two nodes which

transmit approximately 15 dBm each at a frequency close to 10 GHz. Each node provides the in-phase

(I) and quadrature (Q) components of the received signal, and is composed of two identical horn

antennas which for these experiments were separated of about 25 cm. The gain of the antennas was

approximately 20 dB at both nodes, and the antenna beam-width was 15° x 20° at Node 3 and 11.5° x

15.5° at Node 2. The I component and the Q component of the target echoes were low-pass filtered and

then digitised with a TiPie HS4 oscilloscope at a sampling rate of 10 kHz and with a 12-bit resolution.

Fig. 1 shows a sketch of the experimental setup and the deployment of the radar systems. The

experiment took place at the Westmill Wind Farm in Watchfield, near Swindon, in May 2015. This

wind farm consists of five 49 m tall wind turbines each one carrying three 31 m long blades. Only the

two turbines closest to the radar nodes were used as targets, as shown in the sketch in Fig. 1. A top

view of the wind farm is also provided in Fig. 1 for completeness, highlighting the position of two S-

band nodes and their antenna beams when pointing at the first turbine under test. The average wind

speed during the experiment was estimated between 12 m/s and 17 m/s as from historical data of the

nearest weather station. The three NetRAD nodes were separated by 50 m and provided monostatic

and bistatic data with two different bistatic angles for each measurement. Two monostatic X-band



radar were deployed at the location of the monostatic S-band node and at the farthest bistatic S-band

node to provide comparative data. It should be noted that the monostatic and bistatic S-band data were

collected simultaneously as the three nodes are synchronised by a common clock and trigger. The X-

band data were also collected simultaneously with the S-band data, apart from a small delay of

fractions of second due to non-perfect manual synchronisation of the starting time of both radar

systems. The difference in start times of the systems was negligible in the later processing, as multiple

rotations of the turbine were included in both datasets allowing the average behaviour to be

characterised sufficiently for direct comparisons between the two systems. The distance of the first and

second turbine under test (TUT1 and TUT2 respectively) from the baseline was approximately 246 m

and 439 m. The resulting bistatic angles for TUT1 and TUT2 are respectively 23° and 13° considering

the farthest bistatic node (node 2), and approximately 11.5° and 6.5° considering the nearest bistatic

node (node 1).

It should be noted that the data collected are in the near field of the wind turbine. The minimum far-

field distance required for this kind of measurements considering the 12.5 cm wavelength at S-band

and the 31 m blade length of the turbine would be in the range of 15 km according to the usual relation

2D2 for far-field. The far-field distance is actually even longer if the calculation is repeated for X-

band (approximately 64 km) or if the whole tower height is considered and not only the blade, making

far-field measurements infeasible in practice with any research radar at microwave frequencies. In [11]

and [31] this issue is also discussed and it is argued that it is not unlikely that wind farms, especially

those with the largest turbines, are located in the near-field of radar systems and hence the

experimental analysis of near field data is still very valuable.

Separate datasets were collected for the TUT1 and the TUT2 repointing the antennas to the nacelle of

the particular turbine under test using optical alignment via rifle-scopes. The data collected for

different turbines are therefore not simultaneous. Data at different polarizations were collected for both

turbines, namely VV (vertical transmitted and vertical received) and HH (horizontal transmitted and

horizontal received) data. The change of polarization required to manually rotate the antennas,

therefore VV and HH data are not simultaneous even if referring to the same turbine under test.



Figure 1 Sketch and top view of the experimental setup with S-band and X-band radar deployed and the turbines

3. Data Analysis

The resolution for S-band data is sufficient to discriminate in range the return from different turbines,

hence only the signal at the range bin where the turbine return is present was used for Doppler

processing. As an example, Fig. 2 shows two Range-Time-Intensity (RTI) plots for monostatic and

bistatic data collected at node 3 and node 2, respectively, when measuring the returns of the TUT1.

The return of the particular turbine of interest can be identified as a vertical line in these plots and used

for the Doppler analysis in this section.

Figure 2 RTI plots for monostatic (a) and bistatic (b) VV polarised data collected for TUT1



The CW radar at X-band has no range resolution, so the return from all the turbines detected by the

radar will contribute to the Doppler signature. The Doppler processing used Short Time Fourier

Transform (STFT) with 0.6 s Hamming window at S-band and about 1/4th at X-band, and 95% overlap

to produce spectrograms. These spectrograms are shown in this section with the goal of characterizing

monostatic vs bistatic wind turbine signatures, and investigating whether bistatic data can help mitigate

wind farm clutter.

3.1 S-band data

Fig.3-Fig.5 show the monostatic and bistatic signatures of the measured wind turbines, in the form of a

spectrogram, at different polarizations. For the VV polarized data in Fig.3 and Fig.4 it is possible to

observe that the overall bandwidth of the Doppler signature appears to decrease from monostatic to

bistatic data, and this effect is more visible for the data collected with a wider bistatic angle (i.e. at

node 2 in comparison with node 1). In the VV data this effect appears to be more significant for data

referring to the TUT1 compared with the TUT2, and this may be related to the different aspect angles

that the two turbines present between the rotation plane of the blades and the line of sight of the radar,

as well as to the different bistatic angles related to the TUT1 and the TUT2. The positive blade flash

appears to be more intense than the negative flash for data at node 3 and node 1 (monostatic and

bistatic with narrower bistatic angle respectively). This was already observed in the analysis of

previous data with narrower bistatic angles [26], although it should be noted that the orientation of the

turbines may have been different for the current and older datasets as they were recorded at different

times. On the contrary the negative Doppler flashes appear more intense relatively to the strongest

components in Fig. 3b and 4b, showing that at increased bistatic angle the wind turbine signature can

be significantly different. In Fig. 3c and 4c the micro-Doppler signatures exhibit an additional, faint

contribution at Doppler values higher than the main blade flashes, at approximately 750-900 Hz. This

may be related to blade-tower-blade multi-bounce scattering phenomena, as highlighted in [24], where

similar contributions in their experimental monostatic spectrograms can be observed. The decreasing

overall Doppler bandwidth of the signature from monostatic to bistatic data can be also seen for HH

data in Fig. 5. In these data the negative blade flashes appear more intense than the positive ones for

both monostatic and bistatic data. As for the VV data, this seems to confirm the empirical observations

for previous data at narrower bistatic angles [26], although it should be noted that the orientation of the

turbine may have been different in the two datasets. The faint vertical lines in Fig. 5b are artefacts

caused by the imperfect phase synchronization between the transmitter node and the receivers (and

they appear only on HH polarised data collected at bistatic nodes 1 and 2). They are not thought to be

related to the actual turbine signature. The Doppler shift of the signatures appears to have far larger

values than those directly related to the average wind speed recorded at the nearest weather station, i.e.



between 12 m/s and 17 m/s which correspond to Doppler shifts of 192 Hz and 272 Hz, respectively.

This discrepancy is believed to be related to the difference between the wind speed recorded at the

weather station and the actual wind speed at the turbine blades, as well as to the uncertainty on the

relation linking the actual rotation speed induced by the wind and the wind speed (which depends on

the way the particular model of turbine works and cannot be estimated from the radar data).

Figure 3 NetRAD spectrograms for TUT1 and VV polarization: (a) node 1 data, (b) node 2 data, and (c) node 3 data

Figure 4 NetRAD spectrograms for TUT2 and VV polarization: (a) node 1 data, (b) node 2 data, and (c) node 3 data

Figure 5 NetRAD spectrograms for TUT1 and HH polarization: (a) node 1 data, (b) node 2 data, and (c) node 3 data

Rather than simply making qualitative comparisons between the spectrograms, specific parameters can

be extracted for a more quantitative comparison of the monostatic and bistatic wind turbine signatures.

The Doppler centroid and bandwidth centroid of the wind turbine signatures have been calculated as in

equations (1) and (2) where fC is the Doppler centroid, BC the Bandwidth centroid, S(i,j) the

spectrogram at the ith Doppler bin and jth time bin. The Doppler centroid is an estimate of the centre of

gravity of the turbine micro-Doppler signature, and the Doppler bandwidth provides an estimate of the



signature bandwidth around the Doppler centroid [18]. The advantage of these estimators is that they

are independent of any normalisation and hence can be applied without loss of information to non-

calibrated data.

(1)

(2)

Fig. 6 and 7 show a comparison between the Doppler centroid and bandwidth relative to the

monostatic and bistatic data, for both the VV and HH polarisations. The Doppler centroid of the

monostatic data appears to have higher positive peak values than that of the bistatic data for both

polarisations. The Doppler bandwidth appears to be on the average higher for the monostatic data in

comparison with bistatic data in HH polarisation and for the TUT2 in VV polarisation (Fig. 6d),

whereas the opposite result is obtained for the TUT1 in VV polarisation (Fig. 6b). These results appear

not to provide a clear and unambiguous conclusion, as in VV polarisation and bistatic angle 23° (Fig.

6b) the bandwidth of the clutter signature is more significant for the bistatic case, whereas in VV

polarisation with bistatic angle 13° (Fig. 6a) and in HH polarisations (Fig. 7b and 7d) the bandwidth of

the clutter signature is more spread for the monostatic case.

Results from the analysis of additional datasets collected on the same day are also shown in Fig. 8 and

Fig. 9, for VV polarised and HH polarised data, respectively. The positive peaks of the Doppler

centroid appear to be higher for the monostatic data for VV polarisation (Fig. 8a and 8c) and for HH

polarised data for the TUT 2 (Fig. 9c). The Doppler bandwidth shows similar trends as observed in

Fig. 6 and 7 with values on average higher for the monostatic data in HH polarised data (Fig. 9b and

9d) and VV polarised data for the TUT2 (Fig. 8d), but higher for the bistatic VV polarised data for the

TUT1 (Fig. 8b).

These results seem to suggest that the choice of polarisation, the deployment geometry of the nodes

(hence bistatic angles), and the angle between the line-of-sight of the radar and the rotation plane of

the turbine blades can all have an impact on the clutter affecting radar nodes. The radar operator can

potentially choose suitable bistatic angles when deploying multiple radar nodes, but the effect of the

aspect angle between the radar line-of-sight and the yaw axis of the turbine cannot be controlled as it

changes dynamically with wind speed and direction. It is potentially expected that the clutter micro-

Doppler signature is less spread out in Doppler at some nodes of multistatic radar or of systems with

multiple independent nodes, and hence less detrimental to the performance of the radar (for instance as



in Fig. 7b, 7d, and 9d). However further work is required to characterize and quantify more accurately

the behaviour of the clutter as a function of the aforementioned parameters and the potential

advantages of bistatic/multistatic configuration.

Figure 6 Comparison monostatic vs bistatic VV polarised data for Doppler centroid (a) and Bandwidth centroid (b) for
TUT1, and Doppler centroid (c) and Bandwidth centroid (d) for TUT2

Figure 7 Comparison monostatic vs bistatic HH polarised data for Doppler centroid (a) and Bandwidth centroid (b) for
TUT1, and Doppler centroid (c) and Bandwidth centroid (d) for TUT2



Figure 8 Comparison monostatic vs bistatic VV polarised additional data for Doppler centroid (a) and Bandwidth centroid
(b) for TUT1, and Doppler centroid (c) and Bandwidth centroid (d) for TUT2

Figure 9 Comparison monostatic vs bistatic HH polarised additional data for Doppler centroid (a) and Bandwidth centroid
(b) for TUT1, and Doppler centroid (c) and Bandwidth centroid (d) for TUT2



Another parameter to consider for a monostatic vs bistatic quantitative comparison is the average

intensity of the micro-Doppler signature associated to the blade flashes across a set of predefined

Doppler bins. Fig. 10 shows examples of these comparisons for VV polarized data and for both TUT1

and TUT2. Two intervals of Doppler bins have been considered, namely 200-300 Hz and 600-700 Hz.

The peak of the monostatic average micro-Doppler intensity appears to be approximately between 3

and 4 dB higher than the bistatic one at lower Doppler bins (200-300 Hz), whereas at higher Doppler

bins (600-700 Hz) the difference is more significant, approximately 6 to 8 dB.

Tables 1 and 2 summarize the values of the micro-Doppler intensity averaged across the whole

duration of the spectrogram for different 100 Hz wide Doppler intervals covering the entire bandwidth,

respectively for VV and HH data. Results for both TUT1 and TUT2 with the time of the measurements

are reported, as well as the difference between the monostatic and bistatic result for comparison. It

should be noted that there was no turbine signature recorded at Doppler bins higher than 400 Hz for

the TUT1 at HH polarizations, hence some fields in the table are left empty. For the VV data the

monostatic intensity appears to be in general higher than the bistatic at positive Doppler bins, with

differences up to approximately 8 dB. This seems to suggest that the bistatic turbine signature is less

intense than the monostatic with the reasonable assumption that the radar nodes are identical. The

situation is different at the negative Doppler bins where the results do not show a clear trend and the

bistatic signature appears more intense at Doppler bins between -200 Hz and -600 Hz, and then less

intense than the monostatic at Doppler bins between -600 Hz and -900 Hz. For HH data there is again

a mixed trend, as the monostatic intensity appears to be lower than the bistatic at negative Doppler bins

for both TUT1 and TUT2, whereas at positive Doppler bins the bistatic intensity is lower for the TUT1

(wider bistatic angle).



Figure 10 Comparison of average micro-Doppler intensity for monostatic and bistatic VV polarised data: (a) average across
200-300 Hz for TUT1, (b) average across 600-700 Hz for TUT1, (c) average across 200-300 Hz for TUT2, and (d) average
across 600-700 Hz for TUT2

Table 1 Comparison of peak of the average micro-Doppler intensity across Doppler bins of wind turbines signature for VV
polarized monostatic vs bistatic data

VV data - TUT1 11:10:02 VV data - TUT2 11:32:02 -

Doppler

bins [Hz]

Avg Intensity

Mono [dBm]

Avg Intensity

Bi [dBm]

Diff mono

and bi

Avg Intensity

Mono [dBm]

Avg Intensity

Bi [dBm]

Diff mono

and bi

200-300 12.42 8.43 4.00 2.83 3.08 -0.25

300-400 7.29 7.74 -0.45 1.47 -0.55 2.02

400-500 8.95 4.72 4.23 2.46 0.35 2.12

500-600 7.87 2.76 5.11 3.15 -3.78 6.93

600-700 5.97 -1.69 7.66 0.35 -7.91 8.26

700-800 -3.82 -10.89 7.07 -9.60 -11.15 1.55

800-900 -9.63 -15.82 6.19 -15.71 -20.81 5.10

-300 -200 8.28 10.59 -2.31 0.68 -0.16 0.83

-400 -300 6.94 9.52 -2.58 -0.03 2.26 -2.29

-500 -400 5.18 9.26 -4.08 -2.20 4.09 -6.28

-600 -500 -0.93 0.02 -0.95 -4.53 2.02 -6.55

-700 -600 -1.37 -2.63 1.26 -4.95 -3.26 -1.69

-800 -700 -4.98 -5.13 0.15 -8.28 -8.26 -0.03

-900 -800 -9.85 -17.22 7.37 -17.76 -20.62 2.86



Table 2 Comparison of peak of the average micro-Doppler intensity across Doppler bins of wind turbines signature for HH
polarized monostatic vs bistatic data

HH - TUT1 12:03:20 - HH - TUT2 12:16:32 -

Doppler

bins [Hz]

Avg Intensity

Mono [dBm]

Avg Intensity

Bi [dBm]

Diff mono

and bi

Avg Intensity

Mono [dBm]

Avg Intensity

Bi [dBm]

Diff mono

and bi

200-300 2.69 0.18 2.51 -5.83 -2.11 -3.73

300-400 0.11 -4.30 4.42 -6.31 -3.39 -2.92

400-500 - - - -11.23 -9.79 -1.44

500-600 - - - -10.48 -12.88 2.40

-300 -200 6.27 10.96 -4.69 -4.86 -1.23 -3.64

-400 -300 2.38 8.53 -6.15 -5.61 -0.61 -4.99

-500 -400 3.82 13.75 -9.93 -5.62 -2.68 -2.95

-600 -500 0.08 7.50 -7.42 -8.80 2.17 -10.97

-700 -600 - - - -6.72 0.01 -6.73

3.2 X-band data

The X-band data were collected using two identical monostatic CW radar systems which were

deployed at Node 2 and Node 3, as shown in Fig. 1. Fig. 11 presents examples of spectrograms for

both VV polarised and HH polarised data which were collected simultaneously to the S-band data

shown in Fig. 3 and Fig. 5. These were calculated using the same window overlap as for the S-band

data (95%) and a quarter of the window length (0.15 s) in order to allow a comparison, with the same

Doppler shift to frequency resolution ratio, between the S-band and X-band data. Results show that the

micro-Doppler signature of the turbine is spread across a wider range of Doppler frequencies which is,

as expected, approximately four times broader than that of the S-band data (being the X-band carrier

frequency roughly four times higher). The signature at node 2 shows a lower Doppler spread in both

VV and HH polarisations. Although each X-band node worked as independent monostatic node, these

results seem to show that multiple nodes surveying an area from different spatial locations can be

affected differently by wind farm clutter depending on polarisations and aspect angle between node

and yaw axis of the turbine. In the previous section similar effects were observed for S-band

monostatic vs bistatic data, i.e. the possibility that one radar node is affected by more favourable

clutter when multi-perspective views from multiple nodes are used. The contribution of the blade

components moving away from the radar generate a stronger return in HH polarisation as for the S-

band data. For both polarisations the blade flashes reach higher negative Doppler shifts.

The Doppler and bandwidth centroid parameters were also estimated for the X-band data in order to

allow a quantitative comparison. Fig. 12 shows the Doppler bandwidth and Doppler centroid relative

to the spectrograms of Fig. 11. Results show that the Doppler centroid for VV polarised data presents

higher positive and negative peaks at Node 3 (Fig. 12a) and that the Doppler bandwidth is also larger



for the node 3 data (Fig. 12b) corroborating the empirical results from the spectrograms. For the HH

polarised data the situation is reversed and higher values of the two parameters are visible for node 2

data. The Doppler centroid in Fig. 12c reaches higher values and exhibits a larger Doppler bandwidth

in Fig. 12d as a results of the strong return of the blade for negative Doppler values at about -1 kHz. At

the time of the measurements the two X-band nodes were not perfectly synchronised hence the time

delay between the Doppler centroid peaks at node 3 and node 2 in some of the data.

Fig. 13 shows the average Doppler power across Doppler bins at X-band for the VV data relative to

the S-band measurements in Fig. 10. The average Doppler power was calculated for two different

ranges of frequencies, 800-1200 Hz and 2400-2800 Hz. Although the CW radar does not separate the

contribution of each turbine, the X-band antennas were aligned to steer alternatively at the TUT1 and

at the TUT2 to collect the data used in Fig. 13. The range of Doppler bins considered was scaled by a

factor of four switching from S-band to X-band. Results show that the peaks of the average power

appear to be approximately 10 dB higher for data recorded at node 2 in the range 800-1200 Hz,

whereas the difference reduces to a couple of dB in the range 2400-2800 Hz.

Figure 11 X-band spectrograms for TUT 1 at VV polarization for node 3 (a) and node 2 (b), and at HH polarization for
node 3 (c) and node 2 (d)



Figure 12 Doppler centroid (a) and bandwidth centroid (b) for X-band radar nodes at VV polarization, and Doppler
centroid (c) and bandwidth centroid (d) for X-band radar nodes at HH polarization

Figure 13 Comparison of average Doppler for node 3 and node 2 X-band VV polarised data: (a) average across 800-1200
Hz for radar steering at TUT1, (b) average across 2400-2800 Hz for radar steering at TUT1, (c) average across 800-1200
Hz for radar steering at TUT2, and (d) average across 2400-2800 Hz for radar steering at TUT2



4. Conclusion

This paper presents experimental micro-Doppler signatures from simultaneous monostatic and bistatic

measurements of operational wind turbines. The data were collected in May 2015 using the UCL

multistatic S-band radar system NetRAD and the Cranfield University X-band radar system, providing

a multiband dataset with bistatic angle up to 23° with both VV and HH polarizations. Such data are

expected to be significantly novel as multistatic multiband measurements of wind turbine signatures

have not been reported before to the best of our knowledge.

Monostatic and bistatic spectrograms from several measurements have been presented and their key

differences have been described empirically and through numerical parameters. The analysis of the

micro-Doppler signatures and of quantitative parameters, such as Doppler centroid and bandwidth, has

shown that wind turbine clutter signatures are affected by the choice of polarisation, by deployment

geometries of the radar nodes and the resulting bistatic angles, and by the aspect angle between the

radar line-of-sight and the yaw axis of the turbines. Depending on the aforementioned parameters, in

some cases Doppler centroid peaks and average values of Doppler bandwidth for the S-band data

appear to be lower at the bistatic node, in other cases at the monostatic node. Similar results are

obtained for the X-band data, where the two radar nodes were working as independent monostatic

nodes, but co-located with the S-band monostatic and bistatic nodes, hence exploiting spatial diversity.

One of the limitations of the available data is the difficulty of estimating the aspect angle between the

blade rotation plane and the line of sight of the radar, as the orientation of the turbine changes

constantly to adapt to the changing wind direction. This aspect angle has a direct impact on the micro-

Doppler signature and characterizing its effect combined with the effect of different bistatic geometries

and polarisations requires further experimentation, in order to identify the best configurations of the

radar nodes to minimize the impact of wind farm clutter.

However, since there is little evidence in the literature of experimental data of operational wind

turbines at two different bands and with simultaneous recording of monostatic and bistatic data, it is

believed that the results presented here can help better characterise and understand wind farm clutter.

The results appear to show that in some conditions the clutter signature is less spread out with lower

values of Doppler centroid and bandwidth at one of the nodes, which could be advantageous for target

detection in the Doppler domain where possible targets of interest (for instance small aircraft or

helicopters) may exhibit Doppler shifts comparable to those generated by the wind farm. In that case

tasks such as target detection and classification are expected to be more easily performed exploiting

the information from the node less affected by wind farm clutter, whereas the overall performance of



the radar system could be severely hindered in case of single node systems when the clutter is

particularly detrimental to that node.

A better understanding of the complex, non-stationary micro-Doppler signature of wind farm clutter

that these results contribute to is expected to help improve more effective solutions to mitigate and

filter the clutter, and further work will be carried out with this aim. This will include the collection of

more data at different bistatic angle and geometries, and different environmental conditions (wind

speed, direction, and turbine orientation) to move towards a statistical characterization of multistatic

wind turbine clutter that takes into account all the variables involved. Another possible option is using

a realistic scaled model of the turbine for laboratory measurements where rotation speed and

orientation of the turbine can be varied in a controlled manner and then comparing the results to the

actual experimental data on the operational turbine on site. The actual effect of monostatic vs bistatic

wind turbine clutter on target detection in the Doppler domain can also be investigated embedding

different simulated target signatures and trajectories into the experimentally measured wind turbine

signatures.
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