33 research outputs found

    Pilot study for the understanding and use of probiotics by different paediatric healthcare professionals working in different European countries

    Get PDF
    Background: Consumers’ conviction of the benefits of probiotics is influenced by their existing beliefs and by the information they receive from healthcare professionals. The attitude of healthcare professionals towards commercially available probiotics will, therefore, determine how trustworthy and beneficial these products are perceived by consumers. Furthermore, due to European Union legislation, companies are prohibited from displaying information on product packaging; therefore, consumers are dependent primarily on healthcare professionals for correct information and guidance on the use of these products. The aim of this pilot study was to explore the understanding and use of probiotics in clinical practice by professionals who are involved in child healthcare in different European countries and to assess how much they value the scientific evidence behind these products. Methods: The study was performed using a cross-sectional, descriptive, 30-question online questionnaire circulated among healthcare professionals belonging to three professional categories that are typically involved in childhood probiotic prescription: paediatricians, dieticians and general practitioners. The questionnaire was developed using webbased standard guidelines, and the questions were modelled on those used in previously published probiotics studies. Results: Overall, 27,287 healthcare professionals belonging to three major European scientific societies were contacted by the organizations participating in the study. In total, 1360 valid questionnaires were recorded, and the results were statistically analysed. Conclusions: The results emphasize the importance for healthcare professionals to be properly educated and updated on probiotics. An improved knowledge about probiotics led to increased prescriptive confidence. To disseminate accurate information on probiotics, healthcare professionals look for appropriate and scientifically validated educational platforms to acquire information, explore concerns and barriers and look for positive approaches towards recommending probiotics

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Coastal hazard risk assessment for small islands: assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands)

    No full text
    Small island states around the world are among the areas most vulnerable to climate change and sea level rise. In this paper, we present results from an innovative methodology for a quantitative assessment of multiple hazards on coastal risks, driven by different hydro-meteorological events, and including the effects of climate change. Moreover, we take an additional step by including in the methodology the option to assess and compare the effectiveness of possible disaster risk reduction measures. The methodology is applied to a real case study at the island of Ebeye (the Republic of the Marshall Islands). An example is provided in which a rock revetment is implemented as a risk reduction measure for the island. Results show that yearly expected damages may increase, by the end of the century, by a factor of three to four, depending on the sea level rise scenario considered, while the number of yearly affected people may double. Putting a cap on the temperature increase (e.g. 1.5 vs. 2 °C) according to the Paris Agreement may reduce damages and number of affected people by about 20 and 15%, respectively. However, impacts for same warming levels can vary substantially among different emission scenarios. Disaster risk reduction measures can be useful for mitigating risks in current and future situations but should be incorporated within long-term adaptive planning for these islands.JRC.E.1-Disaster Risk Managemen

    Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks

    No full text
    Deriving reliable estimates of design water levels and wave conditions resulting from tropical cyclones is a challenging problem of high relevance for, among other things, coastal and offshore engineering projects and risk assessment studies. Tropical cyclone geometry and wind speeds have been recorded for the past few decades only, thus resulting in poorly reliable estimates of the extremes, especially in regions characterized by a low number of past tropical cyclone events. In this paper, this challenge is overcome by using synthetic tropical cyclone tracks and wind fields generated by the open-source tool TCWiSE (Tropical Cyclone Wind Statistical Estimation Tool) to create thousands of realizations representative of 1000 years of tropical cyclone activity for the Bay of Bengal. Each of these realizations is used to force coupled storm surge and wave simulations by means of the processed-based Delft3D Flexible Mesh Suite. It is shown that the use of synthetic tracks provides reliable estimates of the statistics of the first-order hazard (i.e., wind speed) compared to the statistics derived for historical tropical cyclones. Based on estimated wind fields, second-order hazards (i.e., storm surge and waves) are computed that are generated by the first-order hazard of wind. The estimates of the extreme values derived for wind speed, wave height and storm surge are shown to converge within the 1000 years of simulated cyclone tracks. Comparing second-order hazard estimates based on historical and synthetic tracks shows that, for this case study, the use of historical tracks (a deterministic approach) leads to an underestimation of the mean computed storm surge of up to −30 %. Differences between the use of synthetic versus historical tracks are characterized by a large spatial variability along the Bay of Bengal, where regions with a lower probability of occurrence of tropical cyclones show the largest difference in predicted storm surge and wave heights. In addition, the use of historical tracks leads to much larger uncertainty bands in the estimation of both storm surges and wave heights, with confidence intervals being +80 % larger compared to those estimated by using synthetic tracks (probabilistic approach). Based on the same tropical cyclone realizations, the effect that changes in tropical cyclone frequency and intensity, possibly resulting from climate change, may have on modeled storm surge and wave heights was computed. As a proof of concept, an increase in tropical cyclone frequency of +25.6 % and wind intensity of +1.6 %, based on literature values and without accounting for uncertainties in future climate projection, was estimated to possibly result in an increase in storm surge and wave heights of +11 % and +9 %, respectively. This suggests that climate change could increase tropical-cyclone-induced coastal hazards more than just the actual increase in maximum wind speeds

    A Regional Application of Bayesian Modeling for Coastal Erosion and Sand Nourishment Management

    No full text
    This paper presents an application of the Bayesian belief network for coastal erosion management at the regional scale. A “Bayesian ERosion Management Network” (BERM-N) is developed and trained based on yearly cross-shore profile data available along the Holland coast. Profiles collected for over 50 years and at 604 locations were combined with information on different sand nourishment types (i.e., beach, dune, and shoreface) and volumes implemented during the analyzed time period. The network was used to assess the effectiveness of nourishments in mitigating coastal erosion. The effectiveness of nourishments was verified using two coastal state indicators, namely the momentary coastline position and the dune foot position. The network shows how the current nourishment policy is effective in mitigating the past erosive trends. While the effect of beach nourishment was immediately visible after implementation, the effect of shoreface nourishment reached its maximum only 5–10 years after implementation of the nourishments. The network can also be used as a predictive tool to estimate the required nourishment volume in order to achieve a predefined coastal erosion management objective. The network is interactive and flexible and can be trained with any data type derived from measurements as well as numerical models

    Collaborative modelling or participatory modelling? A framework for water resources management

    Get PDF
    Decision Support Systems, and, more recently, participatory and collaborative modelling have emerged as a response to increased focus on stakeholder participation in modelling activities for certain fields like water resources management. Researchers and practitioners frequently use ‘buzzwords’ such as ‘participatory modelling’ and ‘collaborative modelling’. In some cases, both terms are used interchangeably, largely due to unclear distinction between them in literature. This article draws the line between participatory and collaborative modelling by using levels of participation and cooperation as conditioning dimensions. Based on this methodology, a new generic framework is presented. This framework can help identify determinant features of both modelling approaches currently used in water resources management. It permits analysis of these approaches in terms of context, specific use, information handling, stakeholder involvement, modelling team and means. The article concludes with an application of the framework to a collaborative modelling approach carried out for a groundwater study in the Netherlands

    Uncertainties in projections of sandy beach loss due to sea level rise: an analysis at the European scale

    No full text
    Sea level rise (SLR) will cause shoreline retreat of sandy coasts in the absence of sand supply mechanisms. These coasts have high touristic and ecological value and provide protection of valuable infrastructures and buildings to storm impacts. So far, large-scale assessments of shoreline retreat use specific datasets or assumptions for the geophysical representation of the coastal system, without any quantification of the effect that these choices might have on the assessment. Here we quantify SLR driven potential shoreline retreat and consequent coastal land loss in Europe during the twenty-first century using different combinations of geophysical datasets for (a) the location and spatial extent of sandy beaches and (b) their nearshore slopes. Using data-based spatially-varying nearshore slope data, a European averaged SLR driven median shoreline retreat of 97 m (54 m) is projected under RCP 8.5 (4.5) by year 2100, relative to the baseline year 2010. This retreat would translate to 2,500 km2 (1,400 km2) of coastal land loss (in the absence of ambient shoreline changes). A variance-based global sensitivity analysis indicates that the uncertainty associated with the choice of geophysical datasets can contribute up to 45% (26%) of the variance in coastal land loss projections for Europe by 2050 (2100). This contribution can be as high as that associated with future mitigation scenarios and SLR projections.JRC.E.1-Disaster Risk Managemen
    corecore