116 research outputs found

    Coherence of Raman light arises from disorder

    Get PDF
    Light propagation in random materials is a topic of great interest for the scientific community, not only for the possible relevant applications in the fields of photonics and renewable energies but even more since it allows to unveil new fascinating phenomena related to wave physics. Among these physical events, the most robust and always surviving any ensemble average is the coherent backscattering of light (CBS). It is a very subtle interference effect in disordered scattering media (such as semiconductor powders or micro-particle suspensions like milk or fog), in which wave coherence is preserved even after a very large number of random scattering events, eventually manifesting as a maximum of interference in the exact backscattering direction. CBS is related to the well-defined wave character and to the preservation of the optical information, for this reason it has been so far experimentally observed and theoretically studied only for elastic scattering, while the occurrence of inelastic scattering is known to reduce the degree of coherence in the diffusion process, affecting the visibility of the effect. Fazio et al. (2017) have demonstrated that this experimental evidence surprisingly survives also for the inelastic light scattering, such as the spontaneous Raman process, as long as the optical information of the propagating wave is retained. In this kind of inelastic scattering events, light loses a small part of its energy by slightly changing wavelength. Its phase coherence, however, is preserved for a very short time, thus making interference between Raman scattered waves still possible. The observed maximum of interference in the exact backscattering direction is therefore a signature of the coherent nature of individual Raman scattering processes. To date, indications on the coherence properties of Raman scattering have been reported only by looking at the nanoscopic scale, through complex near-field experiments making use of very sharp tips or through ultra-fast time resolved techniques. This time, however, we did not rely on complex experiments or advanced techniques. Conversely, the combination of an accurate experimental procedure and the unique structural properties of a silicon-based material were the only simple ingredients for the observation of a new unexpected physical phenomenon. In particular, a dense forest of ultrathin silicon wires arranged in a disordered fashion, where light waves bounce back and forth countless times before coming out, was the medium that allowed us to reveal this new effect, which opens the way for new and important discoveries

    Effects of pendulum appliance versus clear aligners in the vertical dimension during Class II malocclusion treatment: a randomized prospective clinical trial

    Get PDF
    BACKGROUND: The aim of the present study was to compare the effects on vertical dentoskeletal dimension produced by Pendulum appliance and Clear Aligners in patients with Class II malocclusion. TRIAL DESIGN: This is a prospective two-arm parallel group randomized clinical trial with 1:1 allocation ratio. METHODS: The Pendulum Group (PG) consisted of 20 patients (15F, 5 M) with a mean age of 17.2 ± 4.3 years. The Clear Aligners Group (CAG) comprised 20 patients (13F, 7 M) with a mean age of 17.2 ± 3.2 years. Distalization’s protocol in PG involved the activation of TMA wires till the achievement of Class I molar relationship. A protocol of sequential distalization was applied in the CAG. For each subject lateral cephalograms have been analyzed before treatment (T1) and at the end of the therapy (T2). Descriptive statistics and statistical between-group comparisons (PG vs CAG) were calculated for the craniofacial starting forms at T1 and for the T2–T1 changes. Statistical between-group comparisons for the T2–T1 changes were performed with independent samples t-tests (P < 0.05). RESULTS: The PG showed significantly greater increases in SN^GoGn° when compared with CAG (+ 2.1 and − 0.3 degrees, respectively). Clockwise rotation of the occlusal plane with significantly greater increase of SN^POccl angle was observed in PG (+ 2.8 degrees) when compared with CAG (− 4.2 degrees). The PG revealed a significant increase in the N-Me variable with a mean change of + 4.4 mm compared to the CAG with mean values of − 1.2 mm. The PG showed an increase in the ArGo^GoMe angle (+ 0.7° degrees) compared to the CAG (− 3.4° degrees). The PG showed significantly greater increases in both maxillary and mandibular first molar to palatal plane (+ 1.3 and + 2.1 mm, respectively) when compared with CAG (− 0.9 and − 0.2 mm, respectively). CONCLUSIONS: Upper molar distalization with clear aligners represents a valid alternative to non-extraction treatment of Class II malocclusion, reducing the extrusion of maxillary first molars and improving the management of the occlusal plane and vertical dimension. Trial registration: ClinicalTrials.gov, NCT05298280. Registered 28 March 2022—Retrospectively registered, https://clinicaltrials.gov

    Pomegranate: Nutraceutical with Promising Benefits on Human Health

    Get PDF
    Pomegranate is an old plant made up by flowers, roots, fruits and leaves, native to Central Asia and principally cultivated in the Mediterranean and California (although now widespread almost all over the globe). The current use of this precious plant regards not only the exteriority of the fruit (employed also for ornamental purpose) but especially the nutritional and, still potential, health benefits that come out from the various parts composing this one (carpellary membranes, arils, seeds and bark). Indeed, the phytochemical composition of the fruit abounds in compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) presenting a significant biological and nutraceutical value. For these reasons, pomegranate interest is increased over the years as the object of study for many research groups, particularly in the pharmaceutical sector. Specifically, in-depth studies of its biological and functional properties and the research of new formulations could be applied to a wide spectrum of diseases including neoplastic, cardiovascular, viral, inflammatory, metabolic, microbial, intestinal, reproductive and skin diseases. In this review, considering the increasing scientific and commercial interest of nutraceuticals, we reported an update of the investigations concerning the health-promoting properties of pomegranate and its bioactive compounds against principal human pathologies

    Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives

    Get PDF
    The indole scaffold has been recognized, over the years, as a model for the synthesis of compounds with anticancer activity by dint of its substantiated ability to act via multiple mechanisms, which also involves the inhibition of enzymes engaged in DNA replication. In this regard, a new series of indole and pyranoindole derivatives have been prepared, some of which showed good antitumor activity and proved their inhibitory effects on the tubulin target. The anticancer activity of the newly synthesized compounds has been evaluated on breast cancer cell lines, as MCF-7 and MDA-MB231, cervical cancer cells line HeLa and Ishikawa endometrial cancer cell line. Among the compounds under study, 7 exhibited a good antitumor activity on HeLa cell line (IC50 = 3.6 ± 0.5), leading to cell death by apoptosis due to the inhibition of tubulin polymerization, which demonstrated that the compound can explicate its function in a similar way to Vinblastine, a well-known inhibitor of tubulin polymerization. The data were also confirmed by in silico assays. No cytotoxicity against normal cells has been detected. Furthermore, in order to investigate the antioxidant properties, DPPH and ABTS tests were performed, together with fluorescence assays on 3T3-L1 cells. All our findings taken together led us to consider compound 7 a favourable candidate for the battle against cancer

    Inhibition of human platelet aggregation in vitro by standardized extract of Wendtia calycina

    Get PDF
    Wendtia calycina (Griseb.) Griseb., Vivianiaceae, is a Paraguayan herbaceous plant commonly known as burrito. Our previous study indicated that burrito leaves are a very good source of phenylpropanoid glycosides, principally verbascoside. From W. calycina leaves, a standardized, water-soluble extract rich in phenylpropanoid glycosides (WSE) has been developed on an industrial scale to be used as a food supplement, cosmetic, phytomedicine, and ingredient of different formulations. In this study, we investigated the effect of the WSE on human platelet aggregation in vitro induced by adenosine diphosphate (ADP), epinephrine (EPN), collagen (COL) or arachidonic acid (AA). WSE, concentration-dependently, inhibited ADP and EP-induced human platelet aggregation (IC50 were 0.82±0.15 mg/mL and 0.41±0.02 mg/mL, respectively). It did not inhibit collagen-induced platelet aggregation, thus suggesting a selectivity for the ADP-induced platelet activation pathways

    Comparison of methods to determine accurate dose calibrator activity measurements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In nuclear medicine, liquid radiopharmaceuticals for diagnostic or therapeutic purposes are administered to patients by using various types of syringes with different volumes. The activity of each "dose" must be carefully measured and documented prior to administration using an activity calibrator.</p> <p>Methods</p> <p>Calibrator response is a function of the measurement geometry and, in particular, it depends on the syringe type and filling volume. To minimize the uncertainty associated with the measured activity of the syringe, it is necessary to calculate a calibration curve depending on filling volume for each syringe type. This curve can be obtained by fitting experimentally determined volume correction factors.</p> <p>Results</p> <p>A theoretical evaluation of volume correction factors for syringes is reported for three different experimental methods. The aim is to determine the most accurate experimental method among those considered, by examining the expression of uncertainty for the correction factor. This theoretical analysis was then tested experimentally.</p> <p>Conclusion</p> <p>The agreement between the experimental data obtained in the constant activity method and gravimetric method at constant specific activity and the small associated uncertainties show the accuracy of these two procedures; while the volumetric method at constant specific activity could lead to a wrong evaluation of the correction factors.</p

    Metal Nanoparticles Deposited on Porous Silicon Templates as Novel Substrates for SERS

    Get PDF
    In this paper, results on preparation of stable and uniform SERS solid substrates using macroporous silicon (pSi) with deposited silver and gold are presented. Macroporous silicon is produced by anodisation of p-type silicon in hydrofluoric acid. The as prepared pSi is then used as a template for Ag and Au depositions. The noble metals were deposited in three different ways: by immersion in silver nitrate solution, by drop-casting silver colloidal solution and by pulsed laser ablation (PLA). Substrates obtained by different deposition processes were evaluated for SERS efficiency using methylene blue (MB) and rhodamine 6G (R6G) at 514.5, 633 and 785 nm. Using 514.5 nm excitation and R6G the limits of detection (LOD) for macroporous Si samples with noble metal nanostructures obtained by immersion of pSi sample in silver nitrate solution and by applying silver colloidal solution to pSi template were 10–9 M and 10–8 M respectively. Using 633 nm laser and MB the most noticeable SERS activity gave pSi samples ablated with 30000 and 45000 laser pulses where the LODs of 10–10 M were obtained. The detection limit of 10–10 M was also reached for 4 mA cm–2-15 min pSi sample, silver ablated with 30000 pulses. Macroporous silicon proved to be a good base for the preparation of SERS substrates

    Effects of pesticides on Chelon labrosus (Risso, 1827) evaluated by enzymatic activities along the north eastern Sicilian coastlines (Italy)

    Get PDF
    Pesticides are frequently applied to agricultural activities to improve harvest, in terms of yield and product quality. Useful tools for ecotoxicological studies of marine ecosystems are based on biomarker application on bioindicator key fish species. The main aim of the present study was to detect the potential presence of pesticides in a polluted coastal marine environment, namely Milazzo Gulf, situated in the north eastern coast of Sicily (Italy), by measuring the enzymatic activities of the ecotoxicological biomarkers acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in brain and blood samples of Chelon labrosus. Also, Marinello Reserve was selected as a reference site. The data showed a significant inhibition in AChE (81%) and BChE (71%) activities in fish from Milazzo Gulf in respect to those from the reference site. The esterase inhibition is primarily due to the presence of organophosphorus insecticides and carbamates that resulted, in Milazzo Gulf, higher in concentration in respect to the reference quality standard decree (D.M. 260, 2010). The results obtained in this study confirm the suspected presence of insecticides in waters and fish from Milazzo Gulf, which may lead to a considerable hazard to humans. This study confirms the relevant advantages of the biomarker approach on fish species in the ecotoxicological evaluation of marine environments

    Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS
    corecore