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Abstract: Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological
malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as
well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly
organized organelle with several distinct domains where nuclear inositides localize to mediate
essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or
myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their
metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides
in MDS.
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1. Introduction

Phosphoinositides (PIs) are inositol phospholipids constituted of hydrophilic inositol groups
linked to two fatty chains, which are involved in several signaling pathways. PIs represent the
most frequently studied phospholipids. They are composed of the precursor phosphatidylinositol
(PtdIns) and its phosphorylated derivatives of seven members [1]. PIs play several pivotal roles in
cell proliferation, cell differentiation, and gene expression. The kinases and phosphatases related
to the PI pool are present at both the plasma membrane and nuclear level, within several distinct
compartments of the nucleus, like the nuclear speckles [2]. Phosphoinositide-specific phospholipases
(PLCs) are a group of inositide-dependent enzymes that cleave phosphatidylinositol 4,5-biphosphate
(PtdIns(4,5)P2) to inositol 1,4,5-trisphophate (IP3) and diacylglycerol (DAG). These are key second
messengers that induce or inhibit cell proliferation, cell apoptosis, activation of immune, cells and stem
cell differentiation via intracellular release of calcium ions and activation of protein kinase C (PKC),
respectively [3,4] (Figure 1).

A number of PLC isoforms are found in the nucleus together with their substrate PIs [5–7]. It
is interesting to take into account that nuclear PLC, namely PLCβ1, is regulated differently than the
one at the plasma membrane. Moreover, it has been recently shown that PI receptors occur in the
nucleus, where they mediate the binding interactions between effector proteins and nuclear PIs [8–10].
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The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway plays an important role in
the control of several cellular processes, such as cell growth, proliferation, survival, and neoplastic
transformation [11,12]. Several stimuli, including a range of growth factors and mitogens, activate cell
surface tyrosine kinase receptors, which in turn determine the activation of PI3K. For further activation,
Akt is phosphorylated by mammalian target of rapamycin (mTOR) to regulate cell metabolism and
differentiation [13–15]. In addition, the PI3K/Akt/mTOR pathway has some overlapped functions with
PLCs and PKC [16].

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies
characterized by peripheral blood cytopenia and abnormal myeloproliferation, with a variable risk of
evolution into acute myeloid leukemia (AML) [17]. Although the therapy regimen for MDS patients
has seen improvements in recent years, there are no therapies to quickly eradicate the disease, except
allogeneic stem cell transplantation [18]. The first line of treatment for MDS is an epigenetic therapy
which involves the use of demethylating agents, administered alone or in combination with other drugs.
However, MDS patients at higher risk of AML evolution can become resistant to this therapy [19].
Recently, a molecular study has linked a few inositide-related genes to the lack of response to epigenetic
therapy [20]. However, the mechanisms of appropriate inositide-dependent interactions and regulatory
signals that alter several critical cellular events implicated in MDS, such as cell proliferation or apoptosis,
are still not fully understood [21]. Therefore, a better comprehension of inositide signaling in MDS
could be helpful. Here, we briefly describe the nuclear architecture and nuclear inositide metabolism
while establishing a link between nuclear inositide-dependent signaling and deregulated pathways
in MDS.
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The nucleus is a double membrane-bound eukaryotic cell organelle with a diameter ranging 
from 5 to 10 µm that houses the genome of eukaryotes and consists of several subcompartments. [22]. 
It was one of the first intracellular organelles to be discovered, but comprehension of its overall 
structure at the subnuclear level and functions are still not clear. Many studies have demonstrated 
that the nucleus is highly organized with various membraneless and extremely dynamic subnuclear 

Figure 1. A cartoon representation of phospholipase beta (PLCβ) signaling. PLCβ hydrolyzes
membrane-bound PtdIns(4,5)P2 to inositol 1,4,5-trisphophate (IP3) and diacylglycerol (DAG), which
are important second messengers in the downstream signaling pathway, regulating Ca2+ mobilization
and protein kinase C (PKC) activation.

2. Nuclear Structure and Nuclear Inositides

The nucleus is a double membrane-bound eukaryotic cell organelle with a diameter ranging
from 5 to 10 µm that houses the genome of eukaryotes and consists of several subcompartments. [22].
It was one of the first intracellular organelles to be discovered, but comprehension of its overall
structure at the subnuclear level and functions are still not clear. Many studies have demonstrated
that the nucleus is highly organized with various membraneless and extremely dynamic subnuclear
compartments [22–24]. Also, chromosomes are nonrandomly distributed in the nucleus, as they
localize across distinct regions, called chromosome territories, and interact with various subnuclear
compartments such as nuclear speckles, nucleoli, paraspeckles, cajal bodies, nuclear pore complexes,
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nuclear lamina, and promyelocytic leukemia bodies (Figure 2) [22,25]. This suggests that nuclear
localization of key molecules is not random and several incoming reports support the notion that
gene expression is influenced by nuclear positioning [25–27]. Supporting this notion are evidences of
the existence of important players and dynamically exchanging proteins capable of regulating gene
expression in each of the subnuclear compartments [22,24,25]. For example, nuclear speckles, also
called interchromatin granule clusters or the splicing factor domain, are membraneless subnuclear
compartments located in the interchromatin regions of the nucleus [24]. They are frequently presented as
20 to 50 punctate, irregular structures with varying sizes and shapes under the fluorescence microscope,
whereas they appear as clusters of interchromatin granules under the electron microscope. Nuclear
speckles are reservoirs of pre-messenger RNA splicing factors and other transcription regulatory
proteins which are frequently recruited to active transcription sites [24,25], which is why genes
localizing to nuclear speckles are involved in gene expression.
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Figure 2. Nuclear subcompartments and nuclear inositide signaling. (a) A cartoon representation of the
mammalian nucleus and some of its identified membraneless subcompartmental domains. Numerous
inositides localize within these domains in the nucleus, while regulating gene expression, i.e., speckles;
(b) Schematic representation of nuclear phosphoinositide (PI) signaling involving nuclear PIs and their
nuclear metabolic enzymes.
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Since the 1950s, when the first evidence of PIs was demonstrated [28], most research on the PI
cycle focused on the functional mechanisms of cytosolic membrane-associated PIs, until observations
of the presence of a phospholipid content in the nuclear chromatin were reported [29,30]. This was
an intriguing period for lipid research and it inspired a massive interest in nuclear research, leading
to the discovery, in 1983, of phosphatidylinositol phosphate kinase activity in the nucleus [31] and,
subsequently, a distinct PI cycle in the nucleus [32–34].

Although PIs represent just a tiny fraction of the total lipid content at the plasma membrane, there is
strong evidence from lipidomic mass spectrometry of a high amount of PIs in the nucleus [35]. Nuclear
PIs are not restricted just to membrane structures, but they can also localize to non-membranous
structures [36]. Until now, a plethora of studies have confirmed the existence of PIs and their
metabolizing enzymes, i.e., lipases, kinases, and phosphatases, in several subnuclear compartments.
This generates a distinct PI pool capable of regulating several essential nuclear processes, such as
chromatin remodeling, DNA repair, RNA processing, and gene transcription [1,26,37]. The ability of
PI metabolizing enzymes to localize within the same nuclear subcompartments as their respective
substrate PI or product confirms their direct involvement in nuclear PI metabolism (Figure 2).

A lot of mystery remains associated with nuclear PIs. For example, in which form do nuclear
PIs exist in the nucleus? Do they generate distinct functions related to their distribution at different
nuclear compartments? Are they only transported to the nucleus upon response to certain stimuli or
are they synthesized in the nuclei? How do they interact with effector or target proteins to regulate
nuclear functions? Answering these essential questions is paramount in deciphering the key functional
mechanisms of nuclear PIs [1,26,35]. However, detection of PIs, especially nuclear PIs, remains one of
the biggest challenges in this field. Current methods of detecting PI in vivo utilize light and electron
microscope to visualize antibodies and PI-binding domains that target specific PIs [38]. Using different
advanced techniques, all PIs, except PtdIns(3,5)P2, have been demonstrated to localize to the nucleus
(Table 1) [26,27], being distributed across multiple nuclear sites such as speckles and nucleoli [36].

Table 1. Subcompartmental localization of nuclear PIs and their metabolic enzymes.

Phosphoinositides Nuclear Localization

PtdIns(3,4,5)P3 Matrix [39], nucleoplasm [40], speckles [41], Nucleoli [40]
PtdIns(4,5)P2 Speckles, nucleoli [42], nucleoplasm [38], nuclear lipid islets [43]
PtdIns (3,4)P2 Speckles [41], nuclear membrane [44]

PtdIns5P Chromatin and matrix [45]
PtdIns4P Nucleoli [38], speckles [38], chromatin [35]
PtdIns3P Nucleoli [35] matrix [46]

PI Dependent Metabolizing Enzymes
Nuclear Phospholipases

PLCβ1 Speckles [6], matrix [5]
PLCδ1 Matrix [47]
PLCδ4 Nucleus [7]
PLCε Perinuclear space [48]

Nuclear Phosphatases
PTEN Nucleoli [49], chromatin [50]

INPP5K/SKIP Speckles [51]
SHIP1 Nucleoli [52]
SHIP2 Speckles [41]

Type I PtdIns(4,5)P2 4-phosphatase Nucleus [53]
Nuclear Kinases

DGKθ Speckles [54]
DGK isoforms: α, ζ Matrix [55,56]

PKC isoforms: α, βII, δ, η Nucleus [57,58]
IPMK Nucleus [59]

PIPKIα Speckles [60], nucleoplasm [60], matrix [61]
PIPKIγ_i4 Speckles [62], matrix [61]
PIPKIIα Speckles [63], matrix [61]
PIPKIIβ Speckles [63], matrix [61]
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Table 1. Cont.

Nuclear Kinases

PI3K p110β Nucleus [64]
PI3K IIα Speckles [65]
PI3K IIβ Matrix [46,66]
PI4KIIα Nucleus [67]
PI4KIIβ Speckles [68]
PI4KIIIα Nucleoplasm and Nucleoli [67]
PI4KIIIβ Nuclear pore [49]

Abbreviations: PtdIns, phosphatidylinositol; PLC, phospholipase C; PTEN, phosphatase and tensin homolog deleted
on chromosome 10; INPP5K, inositol polyphosphate 5 phosphatase K; SKIP, skeletal muscle and kidney enriched
inositol phosphatase; SHIP, src homology 2 (SH2) domain containing inositol phosphatase; DGK, diacylglycerol
kinase; PKC, protein kinase C, IPMK, inositol polyphosphate multikinase; PIPK, phosphatidylinositol phosphate
kinase; PI3K, phosphatidylinositol-3-kinase; PI4K, phosphatidylinositol 4-kinase.

3. Nuclear Processes Regulated by Nuclear PIs

Since the nucleus is the genetic powerhouse of cells, it is easy to believe that nuclear localization of
PIs and their metabolizing enzymes allows them to regulate gene and protein expression. Jungmichel
et al. showed by qualitative mass spectrometry analysis that nuclear PIs are bound to over 120 nuclear
proteins expressing different affinities for nuclear PIs [69]. Their report suggests that nuclear PIs
mediate numerous nuclear processes, as they are bound to different nuclear proteins. These functions
are extensively described, but we briefly review a few of these processes below.

3.1. Gene Expression

Gene expression in eukaryotes involves a series of tightly regulated nuclear events spanning from
RNA processing to RNA export into the cytoplasm. Precursor RNA undergoes further processing,
such as 5′ capping, 3′ cleavage, addition of the Poly A tail (polyadenylation), and RNA splicing, before
mature RNA is transported into the cytoplasm. There is increasing amount of evidences linking the
regulation of these processes to nuclear PIs. For instance, Osborne et al. demonstrated in their in vitro
studies the involvement of nuclear PtdIns(4,5)P2 in gene transcription and pre-mRNA splicing. They
revealed an interaction between nuclear PtdIns(4,5)P2, the hyperphosphorylated form of the large unit
of RNA polymerase II and the nuclear speckle protein SC-35. Indeed, through immunodepletion, PIs
inhibited pre-mRNA splicing [42]. In addition, from a yeast-two hybrid screen performed by Mellman
et al. to identify nuclear PIPKIα interacting proteins, an interaction between nuclear PtdIns(4,5)P2 and
a poly (A) polymerase called Star-PAP (speckle targeted PIPKIα regulated-poly (A) polymerase) was
observed [70]. Through this interaction, nuclear PtdIns(4,5)P2 stimulated the initiation and elongation
steps in polyadenylation. Furthermore, IPMK (human inositol polyphosphate multikinase) was also
reported to mediate a transcript-selective nuclear mRNA transport into the cytoplasm by generating
PtdIns(3,4,5)P3 [59].

3.2. Chromatin Remodeling

Eukaryotic DNA is highly condensed in the nucleus and DNA is tightly wound around histone
proteins to form the chromatic complex. Gene expression is regulated by chromatin remodeling.
Numerous studies have pointed out the effects of some PIs on chromatin opening. Typical examples
are the involvement of PtdIns(4,5)P2 and PtdIns5P. Nuclear PtdIns(4,5)P2 has been shown to regulate
chromatin by interacting with the SW1/SNF-like/BAF (BRM-associated factors) chromatin remodeling
complex, through its ATPase subcomponent BRG1 [71]. In addition, nuclear PtdIns(4,5)P2 directly
communicates with H1 and H3 histone proteins. Several studies reported the ability of H1 to inhibit
RNA polymerase II activity during transcription and, interestingly, this is partially reversed upon
adding back PtdIns(4,5)P2 [72,73]. Nuclear PtdIns5P regulates chromatin remodeling by interacting
with the histone code reader associated with the chromatin complex ING2 (inhibitor of growth protein
2), which is a subunit of the HDAC1 complex (Sin3a-histone deacetylase 1). In particular, PtdIns5P
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modulates the binding of ING2 to chromatin and also participates in epigenetic gene expression and
DNA damage [37,74].

3.3. Cell Survival

PtdIns(3,4,5)P3 is involved in major signaling axes implicated in cell survival by promoting the
expression of anti-apoptotic signals [37]. At the nuclear level, PtdIns(3,4,5)P3 is stimulated by NGF
(nerve growth factor) to mediate cell survival. It interacts with nucleophosmin (B23) to form the
PtdIns(3,4,5)P3-B23 complex, which prevents DNA fragmentation by inhibiting the nuclease activity
of CAD (caspase-activated DNase), as well as protecting cells from proteolytic cleavage by interacting
with nuclear Akt (Protein kinase B) [75,76].

Together, these provided evidences underscore the relevance of understanding the signaling
cascades associated with nuclear PIs and their effector proteins. Extending this knowledge to
pathologies, such as MDS, could be beneficial for therapeutic innovations.

4. Nuclear Inositide Dependent Signaling in MDS

4.1. PLCs

Since the first evidence of the existence of PLCs in 1953 [77], 13 mammalian PLC isozymes have
been identified so far and they are divided into six subfamilies (β, γ, ε, δ, ζ, η). Interestingly, all
PLC isozymes show highly conserved domains (X and Y), as well as unique mingled domains (C2
domain, the EF-hand motif, and the pleckstrin homology domain) [78]. The activation and regulation
of PLC isozymes differ in their peculiar subtype structure. Usually, PLCβ enzymes are activated by
G protein-coupled receptors (GPCRs), while PLCγ subtypes are linked to the activation by receptor
tyrosine kinase (RTK) via SH2 domain-phospho-tyrosine interaction [3]. Moreover, there are several
reports of the involvement of specific PLCs in a number of disorders [79].

4.1.1. PLCβ1

As a key inositide-dependent enzyme, PLCβ1 regulates several critical cellular processes, both
at the nuclear and cytoplasmic levels. PLCβ1 is involved in both G1/S and G2/M cell cycle phases
by modulating different proteins, such as cyclin D3, cyclin E, and lamin B1 [80–83]. In recent years,
azacitidine (AZA) and decitabine demethylating agents have been used to treat MDS patients [17,84].
Interestingly, many studies have confirmed that PLCβ1 is a molecular target for AZA [85–88], inducing
an increase of myeloid differentiation (Figure 3) [89]. PLCβ1 can be involved in AZA-induced myeloid
differentiation through the recruitment of the myeloid zinc finger (MZF-1) on the promoter of PLCβ1,
as it is specially recruited in MDS patients responding to AZA therapies [90]. The level of PLCβ1
RNA expression has also been recognized as an important factor to anticipate MDS patients’ clinical
outcome during hypomethylating therapies [90,91].

Recent studies have also demonstrated the importance of nuclear inositides in MDS patients
treated with AZA and lenalidomide, the latter being a drug that is particularly effective in MDS
patients showing a specific deletion of chromosome 5q [del(5q)]. These patients are usually at lower
risk of AML evolution, but are characterized by ineffective erythropoiesis. Little is known about the
molecular effect of lenalidomide, but, currently, the best hypothesis is that it suppresses the del(5q)
clone and restores a normal erythropoiesis [20,92,93]. One study analyzed the effect of lenalidomide
on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines,
focusing on erythropoiesis, cell cycle, and PLCβ1/PKCα signaling [94]. This study revealed PLCβ1
localization within the cytoplasm of the del(5q) cells, whereas, in the same subpopulation, PKCα,
a serine/threonine kinase downstream of PLCβ1, translocated to the nucleus. All these evidences
reveal the role of PLCβ1/PKCα signaling in erythroid differentiation on del(5q) low-risk MDS patients
responding to lenalidomide, and thus opening the way to innovative targeted therapies.
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myelodysplastic syndromes (MDS) cells. Induced by demethylating agents, such as azacitidine, nuclear
PLCβ1 shows a higher expression to promote myelopoiesis of MDS cells. On the contrary, when treated
with erythropoietin, MDS cells downregulate nuclear PLCβ1 expression.

Indeed, in recent years, erythropoiesis-stimulating agents (ESAs) were used as first-line therapy
in most patients with lower-risk non-del(5q) MDS, mainly with the aim of managing anemia and
the prevention of transfusion-related complications which is associate with secondary organ damage,
decreased survival, and leukemic progression [95,96]. Thus, ESAs aim to correct anemia by stimulating
proliferation and differentiation of normal residual erythroid progenitors. Among ESAs, erythropoietin
and mimetics, such as darbepoetin-EPO’s glycosylated form, are the first choice. However, clinical
studies have shown that approximately 30% of MDS patients are resistant towards ESAs right from
the beginning, as determined after 8–12 weeks of treatment, or they eventually lose response over
time [97]. Even though many molecular studies have proposed several different assumptions in recent
years [98,99], the exact molecular mechanisms of ESAs in low-risk MDS patients and their clinical
resistance remain poorly understood. Our previous studies demonstrated that PLCβ1 could be a
negative regulator of erythropoiesis in MDS, and that an inverse correlation between PLCβ1 and Akt
expression could be observed in high-risk MDS patients [85]. The increased expression of PLCβ1 could
indeed induce the downregulation of phosphorylated Akt, whose activation could lead to a decrease
in apoptosis while increasing survival of MDS cells. Moreover, in low-risk MDS patients responding to
ESAs therapies, namely erythropoietin (EPO) [86], EPO was associated with several inositide signaling
pathways, such as PI3K/Akt/PLCγ1, resulting in apoptosis and a low proliferation rate of MDS cells.

4.1.2. PLCγ1

Similar to like PLCβ1, PLCγ1 is an inositide-dependent key metabolizing enzyme which is
involved in an enzymatic reaction that produces IP3 and DAG [3,83]. Although both enzymes share
several common features in molecular structure and function, PLCγ1 still has some unique peculiarities
in its activation and downstream signaling. PLCγ1 activity is regulated by PI3K through the interaction
of the PI3K product PtdIns(3,4,5)P3 and PLCγ1 PH domain. PLCγ1 activates mitogen-mediated
signaling events through second messengers, leading to gene expression changes via PKC [4,100].

Recent studies have demonstrated that PLCγ1 is associated with hematopoiesis in vivo [101] and
also with the differentiation of embryonic stem cells into erythrocytes and monocytes/macrophages
in vitro [102]. Other studies have shown that the PLCγ1-induced Raf1 signaling could be inhibited
by the PI3K/Akt1 pathway [103,104] and, more importantly, genetic mutations in PLCγ1 gene (y10
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allele) could completely disrupt the aortic blood flow and hematopoietic stem/progenitor cells (HSPC)
formation [4]. On the basis of these evidences, it is obvious that PLCγ1 plays a critical role in mammalian
hematopoiesis and vasculogenesis, which are also closely linked to MDS clinical characterization.

ESAs play an important role in reversing anemia also through PLCγ1 signaling pathways. One
of our previous studies confirmed that PLCγ1 expression is high in EPO responder low-risk MDS
patients, whereas it is not significantly affected in patients refractory to EPO [105]. Binding of EPO to
its EPO receptor is required for erythropoiesis. At a molecular level, EPO activation could activate
PLCγ1 [106]. Another study also verified that mH2A2, a downstream effector of PLCγ1, plays the
same function on the regulation of erythroid differentiation, indicating that PLCγ1 and its downstream
target mH2A2 signaling could be a ”non-canonical” EPO signaling pathway essential for erythroid
differentiation [107].

Nuclear and cytoplasmic PLCγ1 are also implicated in the regulation of the lymphoid lineage,
particularly in T cells, but with increasing studies on early B cells [108,109], PLCγ1 seems to be essential
for the regulation of T cells activation and differentiation, through the classical T cell receptor (TCR)
signaling pathway. In addition, PLCγ1 is also involved in the context of signaling initiated by both
growth factors and non-receptor tyrosine kinases, such as epidermal growth factor and hepatocyte
growth factor [89,110,111]. This is also supported by another recent study which demonstrated
that, along with transforming growth factor beta (TGF-β1), PLCγ1 acts as an immune suppressor
by regulating immune cells differentiation and tolerance induction, suggesting the modulation of
the PLCγ1/TGF-β1 pathway in T cell differentiation and immune activation [112]. Moreover, not
only PLCγ1 but also its downstream products, IP3 and DAG, are associated with several different
essential signaling pathways, for example Ras, ERK, and NFAT [113,114]. Interestingly, a specific gene
mutation of the catalytic domain of PLCγ1 was observed in cutaneous T cell lymphomas [115]. A
similar function could also be observed in the regulation of pre-B-cell differentiation, as the reduced
expression of PLCγ1 could impede early B-cell development at the pro-B/pre-B-cell transition [116].

4.2. PI3K/Akt/mTOR

PI3K is a serine/threonine kinase that phosphorylates PtdIns(4,5)P2 to PtdIns(3,4,5)P3, which, in
turn, can be a docking site for other downstream proteins [117]. Akt can be deactivated by the PTEN
phosphatase. In particular, PTEN converts PtdIns(3,4,5)P3 into PtdIns(4,5)P2, directly reversing the
effects of PI3K. Thus, PTEN inactivation leads to PtdIns(3,4,5)P3 accumulation and, consequently, to
the hyperactivation of Akt [13–15]. The PI3K/Akt pathway is involved with mTOR signaling, which is
downstream and represents one of the frequently deregulated pathways in cancer cells, and one of
the most important targets of new cancer therapies [118]. Following Akt activation, phosphorylated
mTOR activates its downstream pathways to regulate DNA repair and transcription, RNA dynamics,
and protein synthesis. The structure of mTOR is peculiar, as it is constituted by two molecular
complexes, mTORC1 and mTORC2. On the one hand, phosphorylated mTORC2 can activate other
downstream targets that can induce a negative feedback activation of Akt, thus, inducing a loop on cell
growth and protein synthesis [119,120]. On the other hand, mTORC1 is particularly associated with
autophagy [121]. Autophagy has been recognized to be induced during oxidative stress where there
are elevated intracellular levels of reactive oxygen species (ROS). Interestingly, ROS is associated with
inositide signaling in MDS pathogenesis [122,123].

Deregulation of PI3K or Akt genes and the upstream molecular targets of the PI3K/Akt/mTOR
pathway are also detectable in more than 60% AML cases. Meanwhile, although mTOR mutations are
rarely observed in tumor cells, its gene loss is always associated with cancerogenesis and regarded as a
potential target for strategic therapies [124].

5. Conclusions

The nucleus is a highly organized organelle with several distinct compartments where inositides
and their metabolic enzymes localize to mediate essential cellular events. Nuclear inositides and
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some specific enzymes, such as PLCs, are becoming new molecular targets in MDS for many cellular
processes, such as cell growth, proliferation, survival, and cellular transformation. As shown here,
PLCβ1 induced myeloid specific differentiation and also inhibited erythroid differentiation in MDS.
Along with PLCβ1, PLCγ1 signal transduction pathways are interconnected with the activation of the
PI3K/Akt/mTOR axis, which is specifically associated with leukemogenesis, and therefore is activated
during MDS progression to AML. PLCγ1 could also be extremely important during the early phases
of erythroid differentiation, as its specific induction in this lineage could be essential to induce a
correct erythropoiesis.

All in all, nuclear inositides could become innovative therapeutic targets or new therapeutic
indicators useful to test the efficacy of the treatment in MDS patients.
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