289 research outputs found

    A distributed command governor strategy for the operational control of drinking water networks

    Get PDF
    Trabajo presentado a la IEEE Conference on Control Applications (CCA) celebrada en Juan-les-Pins, Antibes (Francia) del 8 al 10 de octubre de 2014.This paper proposes the application of a distributed command governor (DCG) strategy for the operational control of drinking water networks (DWN). This approach is very suitable to this kind of management problems given the large-scale and complex nature of DWNs, the relevant effect of persistent disturbances (water demands) over the network evolutions and their marginal stability feature. The performance improvement offered by DCG is compared with the consideration of two non-centralized model predictive control (MPC) approaches already proposed for the same management purposes and within the same context. The paper also discusses the effectiveness of all strategies and highlights the advantages of each approach. The Barcelona DWN is considered as the case study for the assessment analysis.This work has been partially supported by the European Commission (FP7-ICT-2011-8-318556), the European Social Fund and the Calabria Region.Peer Reviewe

    Modelling the Reverse ElectroDialysis process with seawater and concentrated brines

    Get PDF
    Technologies for the exploitation of renewable energies have been dramatically increasing in number, complexity and type of source adopted. Among the others, the use of saline gradient power is one of the latest emerging possibilities, related to the use of the osmotic/chemical potential energy of concentrated saline solutions. Nowadays, the fate of this renewable energy source is intrinsically linked to the development of the pressure retarded osmosis and reverse electrodialysis technologies. In the latter, the different concentrations of two saline solutions is used as a driving force for the direct production of electricity within a stack very similar to the conventional electrodialysis ones. In the present work, carried out in the EU-FP7 funded REAPower project, a multi-scale mathematical model for the Salinity Gradient Power Reverse Electrodialysis (SGP-RE) process with seawater and concentrated brines has been developed. The model is based on mass balance and constitutive equations collected from relevant scientific literature for the simulation of the process under extreme conditions of solutions concentration. A multi-scale structure allows the simulation of the single cell pair and the entire SGP-RE stack. The first can be seen as the elementary repeating unit constituted by cationic and anionic membrane and the relevant two channels where dilute and concentrate streams flow. The reverse electro-dialysis stack is constituted by a number of cell pairs, the electrode compartments and the feed streams distribution system. The model has been implemented using gPROMS , a powerful dynamic modelling process simulator. Experimental information, collected from the FUJIFILM laboratories in Tilburg (the Netherlands), has been used to perform the tuning of model formulation and eventually to validate model predictions under different operating conditions. Finally, the model has been used to simulate different possible scenarios and perform a preliminary analysis of the influence of some process operating conditions on the final stack performance

    Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines

    Get PDF
    Reverse electrodialysis (RED) is a promising technology to extract energy from salinity gradients, especially in the areas where concentrated brine and saline waters are available as feed streams. A first pilot-scale plant was recently built in Trapani (Italy), and tested with real brackish water and brine from saltworks. The present work focuses on the scale-up of the pilot plant, reaching more than 400 m2 of total membrane area installed and representing the largest operating RED plant so far reported in the literature. With a nominal power capacity of 1 kW, the pilot plant reached almost 700 W of power capacity using artificial brine and brackish water, while a 50% decrease in power output was observed when using real solutions. This reduction was likely due to the presence of non-NaCl ions in relatively large concentration, which negatively affected both the electromotive force and stack resistance. These results provide relevant and unique information for the RED process scale-up, representing the first step for the feasibility assessment of RED technology on large scale

    REAPOWER – USE OF DESALINATION BRINE FOR POWER PRODUCTION THROUGH REVERSE ELECTRODIALYSIS

    Get PDF
    Salinity Gradient Power (SGP) represents a viable renewable energy source associated with the mixing of two solutions of different salinities. Reverse Electrodialysis (SGP-RE or RED) is a promising technology to exploit this energy source and directly generate electricity. However, although the principle of this technology is well known since several years, further R&D efforts are still necessary in order to explore the real potential of the SGP-RE process. With this regard, the aim of the REAPower project (www.reapower.eu) is the development of an innovative system for power production by SGP-RE process, using sea (or brackish) water as diluted solution and brine as concentrate. The use of sea or brackish water (instead of fresh water) as diluate allows reducing the electrical resistance of the diluate compartment, increasing the achievable output power. This work presents the R&D activities carried out so far within the REAPower project, particularly focusing on the relevant progresses in membranes development, stack design and process modelling. An extensive experimental campaign has been performed on a lab-scale unit, allowing to reach a power density among the highest so far presented in the open literature. These results provided useful information for the final goal of the project, i.e. the construction of the first SGP-RE system on a small pilot-scale, in order to demonstrate the feasibility of the future scale-up for this technology

    Centralized and distributed command governor approaches for water supply systems management

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper evaluates the applicability of Command Governor (CG) strategies to the optimal management of Drinking Water Supply Systems (DWSS) in both centralized and distributed ways. It will be shown that CG approaches provide an adequate framework for addressing the management of these large-scale interconnected systems in the presence of periodically time-varying disturbances (water demands) that can be anticipated by using time-series forecasting approaches. The proposed centralized and distributed CG schemes are presented, discussed and compared when applied to the management of DWSS considering the same set of operational goals in all cases. The paper illustrates the effectiveness of all strategies using the Barcelona DWSS as a case study and highlighting the advantages of each approach.Peer ReviewedPostprint (author's final draft

    On the comparison of predictive control and command governor approaches for operational management of drinking water networks: a case study

    Get PDF
    This paper evaluates the application of command governor (CG) strategy for the operational control of drinking water networks (DWN) given their large-scale and complex nature, the permanent and relevant effect of the disturbances (water demands) and their marginal stability feature. Moreover, the performance improvement offered by CG is compared with the application of model predictive control for the same management purposes and in the same context. The paper also discusses the effectiveness of both strategies and highlights the advantages of each approach. The Barcelona DWN is considered as case study for the undertaken assessment analysis.Peer ReviewedPostprint (author’s final draft

    Analysis and simulation of scale-up potentials in reverse electrodialysis

    Get PDF
    The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previously proposed by the same authors has been modified in order to predict the behaviour of a cross-flow RED unit. The model was then adopted to investigate the influence of the most important variables (i.e. solution properties and stack geometry) on the overall process performance. In particular, the use of different concentrations and flow rates for the feed streams have been considered, as well as different aspect ratios in asymmetric stacks. Moreover, the influence of the scaling-up a RED unit was investigated, starting from a 22x22 cm2 100 cell pairs lab-stack, and simulating the performance of larger stacks up to a 44x88 cm2 500 cell pairs unit. Finally, different scenarios are proposed for a prototype-scale RED plant, providing useful indications for the technology scale-up towards 1 kW of power production, relevant to the installation of a real prototype plant in Trapani (Italy) being the final objective of the R&D activities of the REAPower project

    Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines

    Get PDF
    This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant - located in the South of Italy - represents the final accomplishment of the REAPower project (www.reapower.eu). A RED unit equipped with almost 50m2 of IEMs (125 cell pairs, 44x44cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03M NaClequivalent) and saturated brine (4-5M NaClequivalent). A power output up to around 40W (i.e. 1.6W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with artificial NaCl solutions, reaching up to ≈65W (2.7W/m2 of cell pair). The unit performance was monitored over a period of five months under, and no significant performance losses were observed due to scaling, fouling or ageing phenomena. Such results are of paramount importance to assess the potential of the technology, towards the successful development on the industrial scale. A scale-up of the pilot plant is planned through the installation of two additional RED modules, with an expected power output in the order of 1 kW
    • …
    corecore