
1 

 

Postprint of paper published on Journal of Membrane Science 500 (2016) 33-45 

 
 

Performance of the first Reverse Electrodialysis pilot plant for power 

production from saline waters and concentrated brines 
 

Michele Tedescoa,b, Claudio Scalicia, Davide Vaccaria, Andrea Cipollinaa*, Alessandro 

Tamburinia, Giorgio Micalea 

 
a Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo 

(UNIPA) – viale delle Scienze Ed.6, 90128 Palermo, Italy.  
b Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA 

Leeuwarden, The Netherlands 
*Corresponding author: andrea.cipollina@unipa.it 

 

Abstract 

 

This work reports experimental data collected for the first time on a full-scale RED pilot plant 

operated with natural streams in a real environment. The plant – located in the South of Italy – 

represents the final accomplishment of the REAPower project (www.reapower.eu). A RED unit 

equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial 

and natural feed solutions, these latter corresponding to brackish water (0.03 M NaClequivalent) 

and saturated brine (4-5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of 

cell pair) was reached using natural solutions, while an increase of 60% was observed when 

testing the system with artificial NaCl solutions, reaching up to 65 W (2.7 W/m2 of cell pair). 

The unit performance was monitored over a period of five months, and no significant 

performance losses were observed due to scaling, fouling or ageing phenomena. Such results 

are of paramount importance to assess the potential of the technology, towards the successful 

development on the industrial scale. 

A scale-up of the pilot plant is planned through the installation of two additional RED modules, 

with an expected power output in the order of 1 kW. 
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1 Introduction 

Salinity gradient power (SGP) technologies aim at the exploitation of the energy available when 

two natural streams with different concentration are mixed together. A number of processes 

have been proposed so far to capture such renewable energy source: among these, reverse 

electrodialysis (RED) represents a promising option that might be brought to industrial 

implementation as soon as new stack components and suitable ion exchange membranes will 

be available at competitive costs [1,2]. 

In the RED process, the mixing of concentrated and dilute streams is regulated by a pile of ion 

exchange membranes (IEMs), which selectively allow the passage of cations and anions, thus 

generating a net ionic current. This latter is then converted into electric current by means of 

suitable electrode reactions at the end compartments closing the membranes stack, and finally 

collected by an external load. 

Recently, several experimental works at the laboratory scale have demonstrated that reverse 

electrodialysis can be suitable for different applications, e.g. for power production from natural 

salinity gradients [3–9], for waste heat recovery using artificial solutions in a closed loop 

[10,11], and for wastewater treatment when coupled with electrochemical and biological 

processes [12,13]. Such experimental investigations notably contributed to understand the 

fundamental aspects of the RED process. However, the great majority of such works were 

performed on laboratory-scale RED units, using a relatively small cell pair area (e.g. 10x10 

cm2) and small number of cell pairs (typically 5-10, up to 50 in some cases [8,9]). The only 

example of a scaled-up unit reported in the literature is a RED stack with 75x25 cm2 membrane 

area and 50 cell pairs, which was tested in laboratory conditions with artificial river water and 

seawater reaching a power output of 16 W (i.e. 0.85 W/m2 of membrane area) [14,15].  

The use of real fresh water and seawater has been recently investigated by Vermaas et al. [16], 

analysing the effect of fouling within laboratory-scale RED units. In that case, a heavy impact 

of fouling was detected: in particular, a 40% reduction of the power output was observed during 

the first day of operation, when only a 20 µm filter was used for pre-treatment [16]. The main 

cause of this performance reduction was attributed to colloidal and organic fouling, which is 

especially crucial for AEMs, as the fouling layer was composed by large anions (e.g. clay 

minerals and silica shell of diatoms). The adoption of anti-fouling strategies is therefore 

necessary to ensure a suitable pre-treatment of natural streams. With this regard, periodic air 

sparging and switching of feed streams have been proposed as valuable methods to reduce 

colloidal fouling [17]. 

In order to further push the development of RED technology, a prototyping and scaling-up 

phase is now of paramount importance, aiming to shift the target of power production towards 

the industrial scale. With this regard, the official opening of the first pilot-scale installation in 

The Netherlands, within the Blue Energy project, was announced in 2014. Such plant is located 

on the Afsluitdijk, a 32 km-long dyke that separates the IJssel Lake from the Wadden Sea, and 

is fed with seawater (~28 g/l) and fresh water from the lake (0.2-0.5 g/l). Up to now, no data 

have been publicly reported since the official opening (November 2014): the only published 

information was provided by Post et al. [14] in 2010, i.e. when the pilot was still in its 

conceptual design stage. According to the available literature information, the Blue Energy pilot 

plant in its final configuration will be fed with 220 m3/h of seawater and fresh water, aiming at 

the generation of 50 kW gross power output as maximum target.  

An interesting alternative to the use of seawater and fresh water as feed streams is the use of 

concentrated brines in combination with low-concentration saline waters, which allows to 

further enhance the power outputs of the process [18–20]. As an example, a power density 

above 6 W/m2
membrane was recently achieved in laboratory investigations using concentrated 

brines and low-salinity waters as feed solutions [9,20]. In particular, regarding the dilute stream, 

fresh water can often represent the main contribution to the internal electric resistance of the 
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stack, thus limiting the power output. Therefore, the use of a low-concentration saline stream 

instead of fresh water allows to lower the internal stack resistance, though reducing the inlet 

concentration difference. For this reason, a trade-off has to be identified regarding the optimal 

value of concentration that reduces the stack resistance without appreciable loss in terms of 

driving force. This concept was the basis of the REAPower project [21], whose main goal was 

to demonstrate the potential of reverse electrodialysis technology using saline streams and 

concentrated brines as feed solutions.  

This idea was firstly addressed through modelling works [22] and experimental demonstration 

at laboratory scale [9,23]. In particular, a process simulator was developed by Tedesco et al. 

[24] to describe the operation of a RED plant fed with such high saline solutions. Investigating 

the effect of salt concentration on power density for a laboratory RED unit (10cmx10cm cell 

pair area), optimal feed conditions were identified in the use of brackish water (0.08-0.1 M 

NaCl) as dilute and brine (4.5-5 M NaCl) as concentrate [24]. Assuming similar feed conditions 

on a pilot scale, a power output of more than 1 kW was predicted for a plant equipped with 3 

RED modules of 44x44 cm2 and 500 cell pairs [25].  

Following these modelling predictions, a demonstration plant was designed and constructed as 

final accomplishment of the REAPower project. The plant is located within the saltworks of 

Ettore e Infersa in Marsala (Trapani, Italy): such location provides both feed streams for power 

production, i.e. brackish water (from a shoreline well) as dilute, and almost saturated brine from 

saltworks as concentrate (Figure 1). 

 

 

Figure 1. A) Location of the REAPower pilot plant in Marsala (Italy). B) Satellite image of the REAPower plant 

installation site (Ettore-Infersa saltworks, Marsala, Italy). Saturated brine from basins and brackish water from a 

shoreline well are available in the same area as feed streams for the RED process. 

 

Focus of this work is to present the activities carried out during the design, installation and 

testing of the 1st phase of the REAPower demonstration plant. A RED unit with 44x44 cm2 

membrane area equipped with 125 cell pairs was installed in such environment and tested both 

with real solutions (brine and brackish water) and with artificial NaCl solutions. The 

performance of the plant was monitored over a period of five months of operation, providing 

for the first time experimental data on a full-scale RED pilot plant operating in a real 

environment.  

2 Plant design and installation 

2.1 The installation site  

The Ettore-Infersa saltworks in Marsala (Trapani, Italy), situated on the west coast of Sicily 

(Figure 1.A), is one of the most important areas in the Mediterranean Sea for the production of 
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sea-salt. With its availability of large amounts of concentrated brines, this site represents a 

perfect location for demonstrating the feasibility of RED technology with highly concentrated 

solutions. 

A saltworks is a delicate natural environment where sodium chloride is extracted from seawater, 

exploiting the natural evaporation caused by solar energy and wind. Process waters (starting 

from seawater) flow along large basins driven by gravity or by low-prevalence pumps. Due to 

evaporation, salt concentration increases along the basins ending with a brine saturated in NaCl 

which is used for the final crystallisation process. A careful flow distribution (regulated through 

small canals and gates) allows to precipitate undesired salts such as calcium sulphates and 

carbonates in intermediate basins, while sodium chloride crystallises only in the last basins. The 

final product has a purity in NaCl normally higher than 97% (i.e. food-grade salt) [26]. 

Clearly, any saltworks area is a feasible location for salinity gradient power production, due to 

the large availability of seawater and concentrated brine in the same site. In particular, the 

Marsala saltworks has been selected as installation site thanks also to the presence of brackish 

water, which is available from a shoreline well (Figure 1.B). It is worth mentioning that, in the 

present experimental campaign, the use of brine for RED power production does not 

compromise the salt production process of the saltworks, as the daily volumes required for the 

RED plant (about 5 m3/d) are negligible compared to the total volume of the basins (larger than 

2000 m3). Moreover, the slightly depleted brine coming out from the RED plant can be recycled 

to the basins, where the evaporation rate due to sun and wind (typically between 5 and 10 l/m2/d, 

i.e. about 60-120 m3/d in total for the 4 basins) can rapidly restore the brine concentration, 

without affecting appreciably the evaporation process. Considering that the 4 dedicated basins 

constitute only a small percentage of the total crystallisation basins of the saltworks of Trapani 

and Marsala, a process scale-up of 3-4 orders of magnitude in this site could be still considered 

technologically feasible and well integrated within the conventional production cycle. 

The main characteristics of the feed streams of the plant are reported in Table 1. The available 

brine has a conductivity ranging between 150-220 mS/cm (i.e. NaClequivalent concentration up to 

4-5 M), according to the period of the year: a saturated solution is available in summer, while 

the brine is diluted by rainfalls during winter. Conversely, the conductivity of brackish water is 

rather stable, equivalent to a 0.03 M NaCl solution (Table 1). 

 

Table 1. Characteristics of feed streams of the REAPower plant in Marsala (Italy). 

Solution Conductivity T Typical ion composition (g/l) b 

 (mS/cm) (°C) Na+ K+ Ca2+ Mg2+ Cl- SO4
2- 

Brine 150-220 a 
27 

(18-31) 

64  

(48-94)   

11  

(7-14)  

0.4  

(0-1.3) 

45  

(24-58) 

192  

(175-219) 

39  

(0-75) 

Brackish 

water 
3.4 

24 

(17-27) 
0.41 0.02 0.27 0.08 1.19 0.11 

a The brine conductivity changes appreciably during seasons, ranging from 150 mS/cm in winter up to 220 mS/cm 

in summer. 
b Brine composition can significantly change along the year: the most representative value of concentration is 

reported for each species, while the typical range of variation is indicated between brackets. 

Table 1 reports also the typical ion composition of brine and brackish water. Apart from Na+ 

and Cl-, other ions are present in considerable concentration in the brine, especially Mg2+ and 

K+, while brackish water presents a relatively high concentration of Ca2+ and SO4
2-.The content 

of NaCl (expressed as equivalent percentage, considering Na+ as a limiting species) in brine 

and brackish water was 47% and 46%, respectively.  

Both feed solutions were rather clean, especially brackish water was practically free of 

suspended matter (as expected, being extracted from a shoreline well). The use of clean feed 
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streams is a remarkable advantage for the unit operation, determining a lower risk of channel 

plugging and membrane fouling. 

The feed solutions were constantly monitored in terms of electrical conductivity, being the only 

measurable variable related to salt concentration in online standard measuring systems. Indeed, 

electrical conductivity can be easily related to the salt concentration in case the solutes 

composition can be considered stable (as in the case of the brackish water), while it gives only 

an important, yet qualitative, information when a variability in composition characterises the 

feed solution (as in the case of saltworks brines). 

 

2.2 Pilot plant description 

Feed streams intake 

The pilot plant is connected with two intake lines (~200 m long each), one for the concentrated 

brine from saltworks basins and one for the brackish water from a shoreline well (Figure 1.B). 

In particular, the concentrated brine is taken from four dedicated basins, containing saturated 

brine normally adopted for NaCl crystallisation. In addition, two storage tanks (2 m3 capacity 

each) were installed for testing the system with artificial (NaCl) solutions.  

Both brackish water and brine are firstly sent to a filtration stage, then to a buffer tank (125 l 

capacity), and finally fed to the RED unit for power generation. The solutions exiting from the 

RED unit are a slightly diluted brine and a slightly concentrated brackish water: the former can 

be recycled directly to the saltworks, where its original concentration will be naturally restored 

by the sun and wind evaporation; the latter is discharged in a seawater channel close to the 

installation site (Figure 1.B). A simplified scheme of the plant layout is shown in Figure 2. 
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Figure 2. Simplified scheme of the plant layout. 

Reverse electrodialysis unit 

The installed RED module has a cell pair area of 44x44 cm2 and is equipped with 125 cell pairs 

(i.e. 48 m2 of total membrane area installed). The RED unit, provided by REDstack BV (The 

Netherlands), is designed for a cross-flow arrangement of the feed solutions, with four 

segmented electrodes of Ru-Ir oxide coated Ti mesh (Magneto Special Anodes BV, The 

Netherlands) installed in the external compartments. The stack components are ion exchange 

membranes purposely developed for highly concentrated solutions (Fujifilm Manufacturing 

Europe BV, The Netherlands), and 280 µm woven net spacers (Deukum GmbH, Germany). 

The main properties of the installed membranes are reported in Table 2. 

 

Table 2. Physical properties of Fujifilm ion exchange membranes installed in the REAPower pilot plant*. 

Membrane 
Thickness  

(µm) 

Permselectivitya  

(-) 

Electrical 

resistanceb  

(Ω cm2) 

Hydraulic 

permeability 

(ml/bar h m2) 

Ion 

Exchange 

Capacity 

(meq/g) 

AEM RP1 80045-01 120 0.65 1.55 4.96 1.28 

CEM RP1 80050-04 120 0.90 2.96 4.72 1.45 

* Data provided by the membranes manufacturer. 
a Permselectivity measured between 0.5 M NaCl – 4 M NaCl conditions at 25°C. 
b Electrical resistance measured in 0.5 M NaCl solution at 25°C. Adapted from [27]. 

 

The electrode rinse solution (ERS) was purposely selected to minimise the environmental 

impact in the unlikely case of leakage from the electrode compartments into the saline 

compartments. For this reason, the use of hexacyanoferrate compounds was avoided, although 

such redox couple has been widely adopted for laboratory-scale investigation of the RED 

process [28]. Conversely, iron salts (FeCl2/FeCl3) have been identified as suitable redox couple 

for such delicate environment [29]. Therefore, an aqueous solution of 0.3 M FeCl2, 0.3 M FeCl3 

RED UNIT

+-

BRACKISH WATER 

out

(discharged to 

seawater channel)

BRINE out

(recycled to basins)

 

Electrode Rinse

Solution tank

BRACKISH WATER

tank

BRINE

tank

BRINE 

from basins

External load

 

BRACKISH WATER

from shoreline well

artificial

brackish 

water

artificial

brine

ALTERNATIVE LAYOUT

for testing with artificial solutions

p

F

T,σ 

pF T-σ 

pF T-σ 

p T-σ 

p T-σ 



7 

 

and 2.5 M NaCl as supporting electrolyte was used as electrode rinse solution. A small amount 

of HCl was added to the ERS to keep the pH in the range of 2-3 and avoid precipitation of iron 

compounds [30]. 

Pre-treatment section 

Both brackish water and brine were pre-treated through a 50 µm cleanable filter and two 

cartridge filters of 25 µm and 5 µm. In addition, a shock treatment with sodium hypochlorite 

was performed (by feeding the stack with a 5 ppm NaClO solution, prepared in the storage 

tanks for brackish water, twice per week): this allowed to prevent the growth of bio-fouling 

film in the dilute compartments of the RED unit. The hypochlorite dosing was not necessary 

for brine, as bio-fouling is already inhibited by the high salt concentration of the solution. 

Pumps 

Three centrifugal pumps with variable speed (Schmitt MPN 130, Kreiselpumpen GmbH & 

Co.KG, Germany) were used to feed all solutions (i.e. concentrate, dilute and ERS) to the RED 

unit.  

A centrifugal pump was used to extract the brackish water from the well in order to continuously 

fill the buffer tank. An immersed pump (centrifugal pump with open impeller) was installed 

directly in the ponds for the brine intake. The use of such pump – especially suitable for waters 

with suspended matter – was necessary due to the precipitation of salt within the brine basins 

occurring in summer months, when the brine reaches the saturation in sodium chloride. In this 

way, the saturated brine was sucked by the pump along with salt crystals, which were eventually 

blocked in the pre-filters (though this required frequent washing of the filters). 

For testing with artificial feed streams, two membrane pumps (Shurflo SH-4111-03) were 

adopted for pumping the solutions from the storage vessels to the buffer tanks. 

Instrumentation 

The measuring instrumentation was constituted by temperature-conductivity 

sensors/transmitters (Jumo CTI-500) and pressure transducers (Jumo Midas SW) for both inlet 

and outlet solutions. The inlet flow rate of both concentrate and dilute feed streams was 

measured by magnetic flowmeters (Khrone IFC 100 C). Likewise, conductivity, temperature 

and flow rate of the electrode rinse solution were monitored with similar sensors.  

All measured signals, along with the voltage difference between the electrodes were collected 

by a data logger (LabVIEWTM, National Instruments, USA) at a frequency of 1 Hz, while the 

electric current (I) was measured by an external ampere-meter.  

An external load was used during the testing, constituted by a variable resistor (0 – 22 Ω) 

connected in parallel with five lamps (10 W nominal power). These allowed to have a visual 

indication of the power generation. Moreover, the presence of lamps in parallel increased the 

accuracy of the equivalent variable resistor in the range of 1-2 Ω (Figure 3.A), i.e. when the 

external resistance is equal to the stack resistance and the maximum power is produced (as 

already demonstrated in previous literature works [8,9]).  

The pumps, piping and instrumentation were all installed on a compact supporting structure 

built with corrosion-resistant materials (PVC sheets and Bosch aluminium profiled bars). The 

front panel of the supporting structure is shown in Figure 3.B, where all the membrane valves 

and measurers (conductivity-meters, flowmeters, pressure transducers) are visible. 
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Figure 3. A) Equivalent resistance of the external circuit adopted during the tests. Five lamps (10 W each) were 

connected in parallel to the variable resistor (Rload = 0 – 22 Ω) to increase the accuracy in the range of maximum 

power output (1 – 2 Ω).  

B) Front-end panel of the supporting tray. Five pipelines can be identified: HIGH inlet (1), LOW inlet (2), HIGH 

outlet (3), LOW outlet (4), ERS (5). Two RED units are shown on the tray for visual comparison: a laboratory 

stack (about 10 m2 membrane area) and the RED unit adopted for the experimental campaign. 

3 Experimental procedure 

The RED prototype was tested both under “constant load” conditions – i.e. connecting the RED 

unit with a fixed resistance – and under “variable load” conditions, by changing the external 

resistance in order to study the entire voltage-current (E-I) curve.  

Before the measurement, both dilute and concentrate compartments were washed with brackish 

water for some minutes, ensuring that uniform conditions of flow rate and pressure drops in 

both compartments were reached. This procedure was necessary to remove the possible channel 

plugging caused by the precipitation of salt from the saturated brine during stand-by periods. 

Conversely, the shutdown operations consisted in rinsing both compartments with brine, in 

order to store the membranes under wet, high-salinity, conditions, thus avoiding membranes 

drying and preventing the formation of bio-fouling. For long inactivity periods (i.e. days), all 

the compartments (including electrode compartments) were filled with artificial (NaCl) brine. 

During the testing, the stack voltage (Estack) and the external current (I) were directly measured 

as previously described. Therefore, the power generated by the system (P) can be calculated 

according to Ohm’s law: 

 IEP stack  (1) 

The internal electric resistance (Rstack) can be evaluated as the slope of the experimental curve 

on the Estack-I plot, according to the equation: 

 IROCVE stackstack   (2) 

where OCV is the open circuit voltage (i.e. the stack voltage under zero-current condition). 

The net power is evaluated from eq. 1 by subtracting the pumping power due to hydraulic losses: 
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net

QpQp
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  (3) 

where Δp are the pressure drops, Q is the volumetric flow rate, and ηpump is the pump efficiency 

(assumed as 75%); subscripts HIGH and LOW refer to concentrate and dilute compartments, 

respectively. 

Dividing both eq. 1 and 3 by the total cell pair area (N A), the gross and net power density are 

obtained: 

  
AN

P
Pd   

AN

P
P net

netd ,  (4, 5) 

Aside from gross and net power density, other figures of merit have been analysed. The yield 

of the RED system (Y) can be defined as the amount of net power produced per cubic meter of 

feed solution: 

 

av

net

Q

P
Y   (6) 

where Qav is the average flow rate of dilute and concentrate. Finally, the energy efficiency is 

evaluated as the ratio between the power output and the theoretical power obtainable if the 

concentration equilibrium of the mixed solutions was achieved under a reversible 

transformation (Prev): 

 

revP

P
  (7) 

The theoretical power is related to the Gibbs free energy of mixing of the two solutions, 

therefore activity coefficients and molar concentrations of all ions should be taken into account. 

For the sake of simplicity, NaCl has been assumed as key component of the feed solutions and 

the reversible power has been estimated as 
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 ,,

,
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, lnln2  (8) 

where R is the universal gas constant, T is the average temperature of feed solutions, C and γ 

are the molar concentration and the mean activity coefficient of equivalent NaCl solutions. The 

equilibrium concentration (Ceq) is evaluated as 

 

 

HIGHLOW

HIGHHIGHLOWLOW
eq

QQ

CQCQ
C




  (9) 

Activity coefficients and NaCl equivalent concentrations were evaluated from the conductivity 

of both solutions. The relevant correlations are reported in the Appendix. 
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4 Results and discussion 

4.1 Tests with real brackish water and brine 

The RED prototype was firstly tested with real brackish water and brine under constant load 

conditions, in order to investigate the stability of the system when fed with natural solutions. 

As a reference test condition, a flow rate of 8 l/min was assumed for both dilute and concentrate, 

i.e. ideally corresponding to 1 cm/s of fluid flow velocity within the compartments. For the 

electrode rinse solution, a flow rate of ~3 l/min was used for all tests, ensuring a good trade-off 

between enhancing the mass transport and avoiding high pressure drops in the electrode 

compartments.  

Results collected during a typical measurement are shown in Figure 4, where the RED unit was 

connected to a variable external resistance for 1 hour of operation. In particular, all the 

monitored variables are shown as a function of time. 

 

Figure 4. Power measurement using real brackish water (3.4 mS/cm) and brine (187 mS/cm) at 1 cm/s fluid flow 

velocity (i.e. ~8 l/min feed flow rate). A) Temperature. B) Pressure drops. C) Flow rates. D) Stack voltage. The 

Pmax 

OCV 



11 

 

resulting power is shown as a function of the stack voltage as inset plot in (D). Flow rate of the electrode rinse 

solution: 2.6 l/min. 

 

A continuous and stable operation was registered for all variable, but the stack voltage. This 

latter varied from the maximum value achieved under Open Circuit Voltage (OCV) conditions, 

i.e. when an infinite external resistance was applied, to a value equal to OCV/2 (obtained when 

the external resistance matches Rstack), corresponding to the condition of maximum power 

output of the system, being in the present test above 30W (Figure 4.D). It is worth noting that 

such test was carried out when the temperature of brine in the basins raised up to 28-30°C (late 

June). Conversely, the temperature of brackish water (coming from a well) was around 26°C. 

The experimental campaign was carried out during summer months (May 2014 – September 

2014). A lower power production is expected during winter period, due to both a lower 

temperature (15-17°C) and dilution of the brine resulting in lower values of conductivity (e.g. 

100-150 mS/cm).  

Notably, Figure 4.A shows a crossing of the outlet temperature of solutions, reaching on 

average 27-28°C and 26°C for brackish water and brine, respectively. A crossing in the outlet 

temperature (that would not be possible in a co-current configuration) is not surprising in this 

case, as the RED stack was fed in cross flow arrangement, working similarly to a counter-

current configuration [31]. 

The brackish water compartment showed lower pressure drops than the brine compartment 

(Figure 4.B) due to both the lower viscosity of the dilute solution and the partial plugging of 

the spacer-filled channel caused by the likely precipitation of NaCl (though this phenomenon 

occurred especially when feeding the stack with natural saturated brines). 

The RED prototype was tested with real solutions under different conditions of flow rates. 

Figure 5 shows the effect of increasing flow velocity (both for brackish water and brine) on the 

power output. 

 

 

Figure 5. Influence of feed flow velocity on process performance. Power measurements performed feeding the 

prototype (44x44 cm2, 125 cell pairs) with real brine (cond. 196 ± 11 mS/cm, THIGH ≈ 28 ± 1 °C) and brackish 

water (cond. 3.4 ± 0.1 mS/cm, TLOW ≈ 25 ± 1 °C). 

 

Increasing the flow velocity can be beneficial in the enhancement of power density for two 

reasons: 1) reduction of the residence time of solutions inside the stack, leading to higher 
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driving force and OCV [32]; 2) improved mass transfer phenomena, thus reducing the stack 

non-ohmic resistance [33–35]. As an overall result, a 30% higher power output was reached by 

increasing the flow velocity from 0.8 up to 2.4 cm/s (Figure 5). However, in general, a regular 

trend for OCV and stack resistance as a function of flow velocity was not detected during the 

experimental campaign with real solutions (see Fig. A.1 provided in the Appendix). In fact, the 

experimental scattering due to the variability of several operating parameters (e.g. feed 

temperature, brine composition, reversible salt precipitation occurring in some tests, etc.) tends 

to hide the weak influence that fluid flow velocity normally has on the process.  

It should be also noted that high flow rates lead to a rapid reduction of the net power density 

and the process efficiency [9,34]. In fact, doubling the flow rate generates an increase in 

pumping losses by 4-8 times (depending on the laminar/transitional/turbulent regime 

characterising the flow in the piping, manifolds and RED channel). The second effect is related 

to the reduction in the residence time and subsequent reduction in the conversion of the 

available salinity gradient into electricity. 

Moreover, maximum values of flow rates for practical applications are limited by the pressure 

drops, which should generally be kept below values of 1 bar for avoiding mechanical stresses 

and limit internal leakages. In this case, at the maximum investigated flow rate (QLOW = 18 

l/min, i.e. 2.4 cm/s; QHIGH = 12 l/min, i.e. 1.6 cm/s), pressure drops were 0.7 and 0.9 bar for 

dilute and concentrate, respectively. In fact, brine flow velocity higher than 1.6 cm/s was 

avoided in order to keep the pressure drop below 1 bar, as suggested by the stack manufacturer. 

4.2 Tests with artificial solutions 

Aside from the operation with real brine and brackish water, the RED system was also tested 

with artificial solutions. 

These were prepared using tap water and sea-salt from the saltworks (purity in NaCl between 

95% and 97%) and also with almost pure NaCl (>99.5%). The typical concentration of sea-salt 

used for tests with artificial solutions is reported in Table 3. As already indicated in paragraph 

2.1, the electrical conductivity was selected as a reference variable. For the same reasons, the 

comparison with artificial solutions was performed keeping the same conductivity as in the case 

of the real brine (~200-220 mS/cm) and brackish water (3.4 mS/cm). It is worth mentioning 

that this choice leads to NaCl concentration in the artificial solutions larger than in natural ones, 

although the overall salt concentration in both cases is similar. A reference case is identified for 

the system under “feed-controlled” operations, i.e. using artificial NaCl solutions. When 

passing to natural solution with similar conductivities (and, in facts, adopting a NaCl artificial 

brine close to saturation as in the case of the natural brine), the detrimental effect on the power 

generation can be thus observed. 

In order to avoid any influence of natural solutions residues in the channels and within the 

membranes, the RED unit was rinsed with the artificial solutions and conditioned overnight 

before starting the testing.  

 

Table 3. Typical ion composition (in w/w %) of sea-salt adopted for tests with artificial solutions a. 

Na+ K+ Ca2+ Mg2+ Cl- SO4
2- 

37.7 

(33-38)   

0.0  

(0-0.5)  

0.3 

(0.2-1.1) 

0.8 

(0.3-2.3) 

60.9 

(57-61) 

0.3 

(0.3-1.6) 

a The most representative value of concentration is reported for each species, while the typical range of variation 

is indicated between brackets. 
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The influence of the dilute feed concentration and flow-rate on process performance was 

investigated by carrying out the power measurements changing the dilute flow velocity in the 

range 1 – 1.5 cm/s and conductivity in the range 1.2 – 5.9 mS/cm. Conversely, constant 

conditions were kept for the concentrate feed, consisting in artificial brine (215 mS/cm) at 1 

cm/s flow velocity for all tests. The results of such analysis are reported in Figure 6 in terms of 

OCV and stack resistance variation. 

 

 

Figure 6. Influence of dilute conductivity and flow rate on OCV (A) and stack resistance (B). Power measurements 

performed feeding the prototype with artificial brine (NaCl solution at 215 mS/cm, flow velocity 1 cm/s, THIGH ≈ 

28 °C) and artificial brackish water (NaCl solution at 1.2 – 5.9 mS/cm, TLOW ≈ 25 °C). 

 

The strongest dependence of OCV was observed when increasing the dilute conductivity, 

leading to a reduction related to the lower salinity gradient available for the process (Figure 

6.A). An increase of dilute flow velocity leads to a very slight increase of OCV, though the 

dependence is so weak to be comparable with experimental error. The opposite dependence was 

found for the stack resistance (Figure 6.B), which was enhanced by the reduction in the dilute 

conductivity. No significant dependence was found between the stack resistance and the flow 

velocity.  

The counter-acting effect on OCV and stack resistance is eventually reflected in the power 

output trends, characterised by a scattering of measured power output values around an average 

above 50 W (Figure 7). This value is 30-40% higher than that obtained with real solutions, thus 

indicating a detrimental effect of the use of natural solutions on the system performance. 

From Figure 7, it can be noted that the power production in the RED system was stable in a 

wide range of operating conditions, highlighting only small variation with respect to the average 

values of power density and with no indication of a sharp value of optimal conductivity or 

velocity. This evidence is in good agreement with the findings of Tedesco et al. [25], who 

carried out process simulations identifying such relatively wide range of LOW concentrations 

as an optimal choice for maximising the power output of the system. 
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Figure 7. Influence of dilute conductivity and flow rate on power output. Power measurements performed feeding 

the prototype with artificial brine (NaCl solution at 215 mS/, flow velocity 1 cm/s, THIGH ≈ 28 °C) and artificial 

brackish water (NaCl solution at 1.2 – 5.9 mS/cm, TLOW ≈ 25 °C). 

 

Although the use of the above mentioned artificial solutions leads to an increase in power output 

with respect to the case of natural solutions, this is not yet representative of operations with 

pure-NaCl solutions. In fact, sea-salt from saltworks still contains small amounts of ions 

different from Na+ and Cl- (K+, Mg2+, SO4
2-), which may have a relevant impact on the 

performance, though being normally below 3-5% in terms of mass fraction.  

For this reason, the RED unit was also tested with artificial solutions prepared with 99.5% pure 

sodium chloride (SOSALT S.p.A., Italy). The power measurements were performed changing 

the conductivity of the dilute, ranging from 0.6 up to 5 mS/cm, while the conductivity of the 

artificial brine was kept close to the saturation point ( 210 mS/cm). Results are shown in Figure 

8, where the relevant electric variables (stack voltage, resistance, power and power density) are 

reported as a function of the conductivity of feed dilute solution. 
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Figure 8. Influence of dilute feed conductivity on process performance. A) Stack voltage and resistance. B) Power 

and power density. Power measurements performed feeding the prototype with artificial solutions prepared with 

99.5% NaCl. Brine conductivity: ~ 210 mS/cm. Flow velocity: ~1 cm/s (8 l/min feed flow rate). T ≈ 23 °C. 

 

In accordance with the previous case (Figure 6), a decrease of stack resistance and OCV is 

observed when increasing the dilute conductivity (Figure 8.A). As a consequence, a rather 

constant power output was reached when using 0.6 and 3.4 mS/cm NaCl solutions, while a 

reduced power was measured at 5 mS/cm (Figure 8.B).  

The direct comparison of stack performance with natural and artificial solutions is shown in 

Figure 9, comparing tests where both dilute and concentrate streams were fed to the stack at 8 

l/min flow rate. 

 

 

Figure 9. Power measurements performed with real (brackish water - brine) and artificial (sea-salt and 99.5% 

NaCl) solutions. A) Polarization curve. B) Power and power density curve. Brine conductivity: 196 ± 11 mS/cm. 

Brackish water conductivity: 3.4 ± 0.1 mS/cm. Flow velocity: 1 cm/s (~8 l/min feed flow rate). T = 25 ± 3 °C. 

 



16 

 

Significant differences in process performance are observed when feeding the plant with the 

three different sets of solutions. In particular, the use of real solutions leads to a 13% reduction 

in the OCV with respect to the case of both artificial solutions with sea-salt (Figure 9.A). This 

indicates how the presence of significant quantities (up to 40-50% in mols) of non-NaCl ions 

(e.g. K+, Ca2+, Mg2+, SO4
2-) reduce the electro-motive force of the membranes pile. This effect 

might be related to the different activity of salts in the brine and the reduced IEMs 

permselectivity with non-NaCl salts. Conversely, a lower stack resistance is registered only 

when passing from the sea-salt to the 99.5% NaCl solutions, thus confirming that even small 

quantities (3-5%) of non-NaCl ions present in the sea-salt can significantly affect the membrane 

resistance, as already demonstrated in previous laboratory investigations [23,36,37]. The effect 

of bivalent ions on RED performance was also investigated by Post et al. [36] and Vermaas et 

al. [37]. In particular, Veermas et al. performed experimental tests adding 10% MgSO4 to the 

NaCl feed solutions, observing a power reduction ranging from 29 up to 50% (depending on 

membrane type [37]). 

As a final result, a power output of ~ 65 W was achieved using 99.5% NaCl solutions, thus 

exceeding a 60-70% increase with respect to the case of real solutions (Figure 9.B). 

The use of natural solutions in a real environment remarkably affects the performance of the 

process. Such findings are in agreement with the outcomes of laboratory investigations reported 

in the literature [23]. In particular, using artificial brackish water and brine with a salt 

composition similar to the present case real solutions, Tufa et al. [23] measured a 63% reduction 

in power density with respect to the reference case adopting artificial solutions. The main effect 

was attributed to the presence of Mg2+ ions, which drastically increase the IEMs resistance.  

4.3 Long-term performance of the plant 

During the whole experimental campaign, a significant amount of data was collected from May 

2014 to September 2014, feeding the system with real brine and brackish water, and then with 

artificial solutions prepared with sea-salt or pure NaCl. The overall performance of the 

prototype over five months of operation is shown in Figure 11, where the main performance 

indicators (gross and net power, yield and efficiency) are reported for the most relevant tests 

carried out during the experimental campaign. 

In most cases, the experimental points reported in Figure 11 are obtained as a mean of 3 

different measurements. The reproducibility of the experiments was good, as 5% discrepancy 

was normally encountered, when the same feed solution were adopted (i.e. tests performed 

within the same day). However, the scattering of data shown in Figure 11 is mainly due to the 

different experimental conditions investigated (e.g. changing flow rate or conductivity), or 

caused by the variable conditions of the real brine (temperature, conductivity and composition) 

during the period, or by different operating choices of the experimental campaign (small 

changes in inlet/outlet channel configurations, inversion of concentrate and dilute channel, etc.). 

More detailed information on the variables monitored during the tests (conductivity, flow rates 

and electric variables) is reported in the Appendix. 

The power achieved with real brine and brackish water in typical conditions was around 35-40 

W (i.e. 1.5-1.7 W/m2
cell pair), with peak values around 45 W. The net power output oscillated 

around an average of 25 W, with higher values registered for the artificial solutions and lower 

values when using the natural brines and saline waters. In particular, Figure 10 reports the 

observed trend of net power output versus total pressure drops in the HIGH and LOW 

compartments, indicating how the net power significantly decreased when increasing pressure 

drops. It is worth noting that the use of natural solutions also affected pressure drops, especially 

in the HIGH compartment. In one case the operation of the prototype even resulted in a negative 

net power (-7 W), due to the very high pressure drops occurring in that specific test (flow 
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velocity of 2.3 cm/s for brackish water and 1.5 cm/s for the brine), despite a gross power output 

slightly above the average (43 W). 

 

 

Figure 10. Observed trend of Net Power output versus total pressure drops (intended as a sum of pressure drops in 

the LOW and the HIGH compartments). 

 

Using NaCl (99.5% pure) artificial solutions the power output increased up to ~ 65 W (2.7 

W/m2
cell pair), which represents the highest value registered during the experimental campaign. 

The yield of the plant resulted in values from 0.03 up to 0.06 kWh/m3 of feed solution when 

operating with natural feed streams, and increased up to 0.1 kWh/m3 in the case of artificial 

NaCl solutions. Such finding is in accordance with the efficiency, which reached values in the 

range of 2-3% for the case of brackish water-brine and up to almost 5% with artificial solutions. 

These values are relatively lower than those commonly presented for the RED process with 

fresh water and seawater (realistic prediction by Feinberg et al. [38] indicate a range from 10 

to 20%). In fact, the use of highly concentrated brine leads to a reduction of the membranes 

permselectivity [9,39] and, therefore, of the energy efficiency of the process. 

Concerning the long term stability of the process, the experimental campaign has demonstrated 

how the RED prototype has been able to work in a wide range of operating conditions, showing 

stable performance over the entire period of testing. Interestingly, no significant problems of 

scaling or fouling were encountered, as indicated by the time-independent performance of the 

pilot unit. 

Further research activities will have to investigate the long-term operations of the RED process 

(e.g. days or weeks), typical of industrial scale processes. 
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Figure 11. Overall performance of the prototype over five months of operation. Range of variable conditions: brine 

conductivity: 135 - 220 mS/cm; dilute conductivity: 0.6 - 6mS/cm; temperature: 17-31°C; flow velocity: 0.8 – 2.4 

cm/s. More detailed information on the monitored variables during the tests (conductivity, temperature, flow rates 

and electric variables) are reported in the Appendix (Figure A.1). 

 

5 Conclusions 

The installation, commissioning and testing of the first RED pilot plant operating with real 

brackish water and brine were presented. A RED unit with 44x44 cm2 membrane area and 125 

cell pairs has been tested for five months using natural and artificial solutions. In particular, 

using real brackish water and concentrated brine as feed solutions, an average power output of 

40 W (i.e. 1.6 W/m2
cell pair) was reached. The same RED unit was tested also with artificial 

solutions, adopted as a reference case for maximum power output of the system. These solutions 

were prepared either with sea-salt (purity in NaCl 95-97%) and NaCl (purity 99.5%), and their 

use as feed solutions has led to a significant increase in the power output, achieving values up 

to 65 W. All these values represent the highest power output reported so far in the literature for 

reverse electrodialysis systems. 
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Testing the unit with natural and artificial solutions highlighted how the use of real feed streams 

can cause a reduction of process performance in the range of 40-50% (in terms of power output). 

Such reduction is likely due to the presence of relevant amounts of non-NaCl salts, especially 

Mg2+, in the real solutions.  

Interestingly, the RED prototype was tested over a period of five months, operating in a wide 

range of operating conditions without showing any significant performance loss during the 

whole experimental campaign. The stable operations were assessed when testing the plant with 

real solutions as well as with the artificial ones, thus demonstrating for the first time the 

technological feasibility of the RED process on a pilot-scale and a real operating environment. 

A future work will focus on the installation and testing of two larger and further optimised RED 

units, each one equipped with 500 cell pairs, aiming at reaching a total membrane area installed 

of more than 400 m2, with a target power capacity of the plant in the order of 1 kW.  
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Nomenclature 

A Membrane area, m2 

C Molar concentration, mol/m3 

Ceq Equilibrium concentration, mol/m3 

I External current, A 

N Number of cell pairs, - 

OCV Open circuit voltage, V 

P Electric power, W 

Estack Stack voltage, V 

Pd Power density, W/m2 of cell pair 

Pd,net Net power density, W/m2 of cell pair 

Pnet Net power, W 

Prev Theoretical power, W 

Q Volumetric flow rate, m3/s 

Qav Average flow rate of dilute and concentrate, m3/s 

R Universal gas constant, J mol-1 K-1 

Rstack Stack electric resistance, Ω 

T System temperature, K 

Y Process yield, kWh/m3 of average feed flow rate 

Greek letters 

γ mean activity coefficient of NaCl, - 

Δp pressure drops, bar 

η energy efficiency, % 
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ηpump pump efficiency, - 

 

Subscripts  

HIGH concentrate 

LOW dilute 

 

Acronyms and Abbreviations 

ERS Electrode Rinse Solution 

RED Reverse electrodialysis 

SGP Salinity gradient power 

E-I Stack potential vs external current curve (also called polarisation curve) 
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Appendix 

A.1 Estimation of activity coefficients and equivalent conductivities 

Activity coefficients were estimated according to the correlation proposed by Staples [40]: 
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where Aγ = 1.17625 kg1/2 mol-1/2, m is the molality of the solution, z+ and z- are the cation and 

anion valence numbers, respectively. The coefficients Bγ, Cγ, Dγ, Eγ are function of the nature 

of the electrolyte, and their values for NaCl are reported in Table A.1. 

 

Table A.1. Parameters of Staples’ correlation (eq. A.1). 

Salt Bγ Cγ Dγ Eγ 

Sodium Chloride 1.2751 0.0956 5.82E-05 0.0005 

 

The equivalent conductivity is estimated by means of Jones and Dole’s equation [41]: 
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where Λ0 is the equivalent conductivity of salt at infinite dilution, c is the molar concentration. 

The values of model parameters AΛ, BΛ, CΛ for NaCl are reported in Table A.2. Therefore, the 

molar concentration was estimated as: 

 



exp

NaClC  (A.3) 

where σexp is the value of the experimentally measured conductivity. 

 

Table A.2. Parameters of Jones and Dole’ correlation (eq. A.2). 

Salt Λ0 * AΛ BΛ CΛ 

Sodium Chloride 126.5000 91.0239 1.6591 6.8041 

 

A.2 Monitored variables  

The RED demonstration plant was tested over a period of five months, changing feed solutions 

(natural or artificial) and with variable operating conditions (in terms of flow rates, temperatures 

and conductivities).  

The performance of the plant has been evaluated through the figures of merit shown in Figure 

10. In addition, Figure A.1 reports all the variables (i.e. conductivity, temperature, flow rates 

and electric variables) monitored during the experimental campaign. 
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Figure A.1. Overview of the performed tests with the RED prototype (44x44 cm2, 125 cell pairs) over five months 

of operation. Range of variable conditions: brine conductivity: 135 - 220 mS/cm; dilute conductivity: 0.6 - 6 

mS/cm; temperature: 17-31°C; flow velocity: 0.8 – 2.4 cm/s. 

 


