32 research outputs found

    Enhanced p53 Levels Are Involved in the Reduced Mineralization Capacity of Osteoblasts Derived from Shwachman–Diamond Syndrome Subjects

    Get PDF
    14noopenShwachman–Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.openFrattini, Annalisa; Bolamperti, Simona; Valli, Roberto; Cipolli, Marco; Pinto, Rita Maria; Bergami, Elena; Frau, Maria Rita; Cesaro, Simone; Signo, Michela; Bezzerri, Valentino; Porta, Giovanni; Khan, Abdul Waheed; Rubinacci, Alessandro; Villa, IsabellaFrattini, Annalisa; Bolamperti, Simona; Valli, Roberto; Cipolli, Marco; Pinto, Rita Maria; Bergami, Elena; Frau, Maria Rita; Cesaro, Simone; Signo, Michela; Bezzerri, Valentino; Porta, Giovanni; Khan, Abdul Waheed; Rubinacci, Alessandro; Villa, Isabell

    Heritability and Demographic Analyses in the Large Isolated Population of Val Borbera Suggest Advantages in Mapping Complex Traits Genes

    Get PDF
    Isolated populations are a useful resource for mapping complex traits due to shared stable environment, reduced genetic complexity and extended Linkage Disequilibrium (LD) compared to the general population. Here we describe a large genetic isolate from the North West Apennines, the mountain range that runs through Italy from the North West Alps to the South.The study involved 1,803 people living in 7 villages of the upper Borbera Valley. For this large population cohort, data from genealogy reconstruction, medical questionnaires, blood, anthropometric and bone status QUS parameters were evaluated. Demographic and epidemiological analyses indicated a substantial genetic component contributing to each trait variation as well as overlapping genetic determinants and family clustering for some traits.The data provide evidence for significant heritability of medical relevant traits that will be important in mapping quantitative traits. We suggest that this population isolate is suitable to identify rare variants associated with complex phenotypes that may be difficult to study in larger but more heterogeneous populations

    Analysis of Metallic Tubes with ECT and Neuro-Fuzzy Processing

    No full text
    The application of a rotating field like that of induction machines is proposed for the eddy current testing of conducting cylindrical structures. This method allows for fast tracking of the position and geometrical parameters of cracks. In order to improve the capability to discriminate the depth of buried cracks, a suitable range of frequencies is considered. The measurement data are processed with a hybrid neuro-fuzzy system. Two artificial neural networks are used, one is specialized for surface cracks and the other one for buried cracks. The fuzzy system is used to perform the switching strategy between the two networks

    Serum Dioxin Concentrations and Bone Density and Structure in the Seveso Women’s Health Study

    Get PDF
    Background2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a widespread environmental contaminant, is a known endocrine disruptor. In animal studies, TCDD exposure impairs bone metabolism and increases fragility. To our knowledge, no epidemiologic studies have examined this association.ObjectivesOn 10 July 1976, a chemical explosion in Seveso, Italy, resulted in the highest known residential exposure to TCDD. In 1996, we initiated the Seveso Women's Health Study, a retrospective cohort study of the health of the women. In 2008, we followed up the cohort. Here, we evaluated the association between TCDD exposure and bone structure and geometry in adulthood, and considered whether timing of TCDD exposure before achievement of peak bone mass (assumed to occur 2 years after onset of menarche) modified the association.MethodsIndividual TCDD concentration was measured in archived serum collected soon after the explosion. In 2008, 350 women who were <20 years old in 1976 underwent a dual-energy X-ray absorptiometry (DXA) bone scan. Bone mineral density was measured at the lumbar spine and hip, and hip geometry was extracted from hip DXA scans using the hip structural analysis method.ResultsAmong premenopausal women, TCDD serum levels were associated with some indexes indicating better bone structure in women exposed before peak bone mass (n=219), with stronger associations in those exposed before 5 years of age (n=46). In contrast, among postmenopausal women, TCDD levels were associated with evidence of better bone structure in women exposed after peak bone mass (n=48) than in other women (n=18).ConclusionsOur current results do not support the hypothesis that postnatal TCDD exposure adversely affects adult bone health. Continued follow-up of women who were youngest at exposure is warranted. Future studies should also focus on those exposed in utero

    Hematopoietic stem cell function in β-thalassemia is impaired and is rescued by targeting the bone marrow niche

    No full text
    Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche, which tune hematopoiesis at steady state and in hematologic disorders. To understand the HSC-niche interactions in altered non-malignant homeostasis, we elected as a paradigm β-thalassemia, a hemoglobin disorder. In this severe congenital anemia, secondary alterations to the primary hemoglobin defect have a potential impact on HSC-niche crosstalk. Here we report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued upon transplantation into a normal microenvironment, thus proving the active role of BM stroma. Consistently with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlates with the rescue of the functional pool of th3 HSCs by correcting HSC-niche crosstalk. Reduced HSC quiescence is confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings uncover a defect of HSCs in β-thalassemia induced by an altered BM microenvironment and provide new relevant insight for improving transplantation and gene therapy approaches
    corecore