12,025 research outputs found

    Radial oscillations of neutral and charged hybrid stars

    Full text link
    We construct stellar models of hadron stars and hybrid stars and calculate the frequencies of their lowest radial mode of vibration. Chandrasekhar's equation for radial oscillations is generalized for stars with internal electric fields and earlier versions of that generalization are simplified. For the hybrid stars a Gibbs construction is employed. It is found that the softening of the equation of state associated with the presence of deconfined quarks reduces the oscillation frequency. We show that a slight charge inbalance should lead to increased maximum mass, decreased central density and lower oscillation frequencies

    Quantum quenches in the Dicke model: statistics of the work done and of other observables

    Full text link
    We study the statistics of the work done in a zero temperature quench of the coupling constant in the Dicke model describing the interaction between a gas of two level atoms and a single electromagnetic cavity mode. When either the final or the initial coupling constants approach the critical coupling λc\lambda_c that separates the normal and superradiant phases of the system, the probability distribution of the work done displays singular behavior. The average work tends to diverge as the initial coupling parameter is brought closer to the critical value λc\lambda_c. In contrast, for quenches ending close to criticality, the distribution of work has finite moments but displays a sequence of edge singularities. This contrasting behavior is related to the difference between the processes of compression and expansion of a particle subject to a sudden change of its confining potential. We confirm this by studying in detail the time dependent statistics of other observables, such as the quadratures of the photons and the total occupation of the bosonic modes.Comment: 8 pages, 2 figure

    Residence time of symmetric random walkers in a strip with large reflective obstacles

    Get PDF
    We study the effect of a large obstacle on the so called residence time, i.e., the time that a particle performing a symmetric random walk in a rectangular (2D) domain needs to cross the strip. We observe a complex behavior, that is we find out that the residence time does not depend monotonically on the geometric properties of the obstacle, such as its width, length, and position. In some cases, due to the presence of the obstacle, the mean residence time is shorter with respect to the one measured for the obstacle--free strip. We explain the residence time behavior by developing a 1D analog of the 2D model where the role of the obstacle is played by two defect sites having a smaller probability to be crossed with respect to all the other regular sites. The 1D and 2D models behave similarly, but in the 1D case we are able to compute exactly the residence time finding a perfect match with the Monte Carlo simulations

    Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm

    No full text
    This paper considers the problem of performing decentralised coordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically, we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a cyclic bipartite factor graph, composed of variable and function nodes (representing the agents’ states and utilities respectively). We show that such representation allows us to use an extension of the max-sum algorithm to generate approximate solutions to this global optimisation problem through local decentralised message passing. We empirically evaluate this approach on a canonical coordination problem (graph colouring), and benchmark it against state of the art approximate and complete algorithms (DSA and DPOP). We show that our approach is robust to lossy communication, that it generates solutions closer to those of DPOP than DSA is able to, and that it does so with a communication cost (in terms of total messages size) that scales very well with the number of agents in the system (compared to the exponential increase of DPOP). Finally, we describe a hardware implementation of our algorithm operating on low-power Chipcon CC2431 System-on-Chip sensor nodes

    Softening of the equation of state of matter at large densities and temperatures: chiral symmetry restoration vs. quark deconfinement

    Get PDF
    We discuss two models for describing the behavior of matter at large densities and intermediate temperatures. In both models a softening of the equation of state takes place due to the appearance of new degrees of freedom. The first is a hadronic model in which the softening is due to chiral symmetry restoration. In the second model the softening is associated with the formation of clusters of quarks in the mixed phase. We show that both models allow a significant softening but, in the first case the bulk modulus is mainly dependent on the density, while in the mixed phase model it also strongly depends on the temperature. We also show that the bulk modulus is not vanishing in the mixed phase due to the presence of two conserved charges, the baryon and the isospin one. Only in a small region of densities and temperatures the incompressibility becomes extremely small. Finally we compare our results with recent analysis of heavy ion collisions at intermediate energies.Comment: 4 pages, 4 figures, editorially accepted versio

    Exotic Heavy Quarkonium Spectroscopy: A Mini-review

    Full text link
    Since nine years experiments have been observing a host of exotic states decaying into heavy quarkonia. The interpretation of most of them still remains uncertain and, in some cases, controversial, notwithstanding a considerable progress has been made on the quality of the experimental information available and a number of ideas and models have been put forward to explain the observations. In this mini-review we will summarize the measurements, with the most recent updates, and list the useful ones yet to be done. We will discuss the problem of the spin of the X, which could hide some major surprise on its interpretation, and review some more phenomenological issues debated in the field.Comment: 14 pages, 2 figures, 5 tables. To appear in Mod. Phys. Lett.

    Weak values are quantum: you can bet on it

    Get PDF
    The outcome of a weak quantum measurement conditioned to a subsequent postselection (a weak value protocol) can assume peculiar values. These results cannot be explained in terms of conditional probabilistic outcomes of projective measurements. However, a classical model has been recently put forward that can reproduce peculiar expectation values, reminiscent of weak values. This led the authors of that work to claim that weak values have an entirely classical explanation. Here we discuss what is quantum about weak values with the help of a simple model based on basic quantum mechanics. We first demonstrate how a classical theory can indeed give rise to non-trivial conditional values, and explain what features of weak values are genuinely quantum. We finally use our model to outline some main issues under current research.Comment: 6 pages, 1 figur

    Automatic Genre Classification of Latin Music Using Ensemble of Classifiers

    Get PDF
    This paper presents a novel approach to the task of automatic music genre classification which is based on ensemble learning. Feature vectors are extracted from three 30-second music segments from the beginning, middle and end of each music piece. Individual classifiers are trained to account for each music segment. During classification, the output provided by each classifier is combined with the aim of improving music genre classification accuracy. Experiments carried out on a dataset containing 600 music samples from two Latin genres (Tango and Salsa) have shown that for the task of automatic music genre classification, the features extracted from the middle and end music segments provide better results than using the beginning music segment. Furthermore, the proposed ensemble method provides better accuracy than using single classifiers and any individual segment

    Wigner-Weyl isomorphism for quantum mechanics on Lie groups

    Full text link
    The Wigner-Weyl isomorphism for quantum mechanics on a compact simple Lie group GG is developed in detail. Several New features are shown to arise which have no counterparts in the familiar Cartesian case. Notable among these is the notion of a `semiquantised phase space', a structure on which the Weyl symbols of operators turn out to be naturally defined and, figuratively speaking, located midway between the classical phase space TGT^*G and the Hilbert space of square integrable functions on GG. General expressions for the star product for Weyl symbols are presented and explicitly worked out for the angle-angular momentum case.Comment: 32 pages, Latex2
    corecore