582 research outputs found

    Numerical investigation on the residual stresses in welded T-joints made of dissimilar materials

    Get PDF
    Abstract This study used the Finite Element (FE) method to numerically analyze the thermo-mechanical behavior and residual stresses in dissimilar welded T-joints. Residual stresses induced by the fusion arc-welding of steel joints in power generation plants are a concern to the industry. The structural integrity assessment of welded structures requires the consideration of weld-induced residual stresses for the safe operations in power plants, which may be compromised by their presence. Details on the used thermo-mechanical FE model and the results analysis are herein presented

    The difficulties in geometry: A quantitative analysis based on results of mathematics competitions in Italy

    Get PDF
    This paper focuses on the difficulties encountered by Italian students in performing geometry tasks. A quantitative analysis, aimed at understanding the extent of the phenomenon, is carried out using the results of district competitions from the year 2018 to 2020, comparing the scores obtained in geometry questions with those in other areas of Olympic mathematics. In addition, the answers given by the students to a questionnaire administered at the end of the 2020 district competition are analyzed in order to better understand possible motivations behind the phenomenon in question. The results obtained need further confirmation through future research on the topic but represent clear trends worthy of further investigation

    Diffusion-assisted molecular beam epitaxy of CuCrO2_2 thin films

    Full text link
    Using molecular beam epitaxy (MBE) to grow multi-elemental oxides (MEO) is generally challenging, partly due to difficulty in stoichiometry control. Occasionally, if one of the elements is volatile at the growth temperature, stoichiometry control can be greatly simplified using adsorption-controlled growth mode. Otherwise, stoichiometry control remains one of the main hurdles to achieving high quality MEO film growths. Here, we report another kind of self-limited growth mode, dubbed diffusion-assisted epitaxy, in which excess species diffuses into the substrate and leads to the desired stoichiometry, in a manner similar to the conventional adsorption-controlled epitaxy. Specifically, we demonstrate that using diffusion-assisted epitaxy, high-quality epitaxial CuCrO2_2 films can be grown over a wide growth window without precise flux control using MBE.Comment: Accepted to the special edition of JVSTA on Thin Film Deposition for Materials Discover

    A network of sex and competition: the promiscuous mating system of an invasive weevil.

    Get PDF
    Invasive alien pest insect species represent a major threat for agriculture and biodiversity. Because chemical treatments employed to contrast such pests elicit serious environmental and human health problems, a great effort is currently directed to develop long term and environmentally friendly biological control strategies. However, the successful application of some promising techniques, such as the Sterile Insect Technique (SIT), requires a deep knowledge of the pest basic biology. Here, we argue that understanding pest sexual biology using a social network approach can significantly improve the performance of control strategies. For example, SIT may benefit from understanding how individuals interact and how males accede to reproduction, in order to target the most reproductively active and polygamic males. In this paper we studied the socio-sexual networks of the Asian red palm weevil (RPW) Rhynchophorus ferrugineus, a worldwide invader which is causing heavy economic impacts on several palm species. We found that the RPW has a highly promiscuous mating system, characterized by forced interruptions of pair copulations by additional males. The social network is highly non-random nor regular: few males almost monopolize reproduction, behaving as key-players in the network of matings. Additionally, males have a stable pattern of sexual behaviour over time. We use RPW social network as a case study to direct the development of management techniques such as SIT strateg

    Molecular dynamics recipes for genome research

    Get PDF
    Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect

    Optimal Planning and Operation Scheduling of Battery Storage Units in Distribution Systems

    Get PDF
    In the last years, the electricity system has been subject to a paradigm change, due to increasing share of installed renewable energy sources-based power plants. This fact is leading electrical system - which proper operation was however affected by the intermittent nature of renewables - to become more “green”. The union of energy chain de-carbonization with service reliability opens new opportunities for storage systems, although their relatively high cost highlighted the importance of optimal decisions in sizing, placing and operation of such systems. For addressing these aspects, appropriate mathematical models and optimization methods are needed: in this paper, a novel and efficient hybrid optimization algorithm is introduced, to solve i) sizing, ii) placement and iii) operation of arbitrary storage systems. This method is then applied to a low voltage grid, to demonstrate the effectiveness of the proposed methodology

    Myopia: Mechanisms and Strategies to Slow Down Its Progression

    Get PDF
    This topical review aimed to update and clarify the behavioral, pharmacological, surgical, and optical strategies that are currently available to prevent and reduce myopia progression. Myopia is the commonest ocular abnormality; reinstated interest is associated with high and increasing prevalence, especially but not, in the Asian population and progressive nature in children. The growing global prevalence seems to be associated with both genetic and environmental factors such as spending more time indoor and using digital devices, particularly during the coronavirus disease 2019 pandemic. Various options have been assessed to prevent or reduce myopia progression in children. In this review, we assess the effects of several types of measures, including spending more time outdoor, optical interventions such as the bifocal/progressive spectacle lenses, soft bifocal/multifocal/extended depth of focus/orthokeratology contact lenses, refractive surgery, and pharmacological treatments. All these options for controlling myopia progression in children have various degrees of efficacy. Atropine, orthokeratology/peripheral defocus contact and spectacle lenses, bifocal or progressive addition spectacles, and increased outdoor activities have been associated with the highest, moderate, and lower efficacies, respectively
    • …
    corecore