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Abstract—In the last years, the electricity system has been
subject to a paradigm change, due to increasing share of installed
renewable energy sources-based power plants. This fact is leading
electrical system - which proper operation was however affected
by the intermittent nature of renewables - to become more
‘“green”. The union of energy chain de-carbonization with service
reliability opens new opportunities for storage systems, although
their relatively high cost highlighted the importance of optimal
decisions in sizing, placing and operation of such systems. For
addressing these aspects, appropriate mathematical models and
optimization methods are needed: in this paper, a novel and
efficient hybrid optimization algorithm is introduced, to solve
i) sizing, ii) placement and iii) operation of arbitrary storage
systems. This method is then applied to a low voltage grid, to
demonstrate the effectiveness of the proposed methodology.

Index Terms—smart grid, storage system, optimization, genetic
algorithm, constraint programming, siting, sizing, scheduling.

I. INTRODUCTION

In the recent years, several International agreements have
pushed the move towards complete de-carbonization of the
energy systems, which should be essentially based on the
larger and major exploitation of the Renewable Energy Sources
(RES) potentiality [1]. Storage system sizing and siting along-
side their optimal use, makes significant profits [2] regardless
of its owner class [3]. Commercial Battery Energy Storage
System (BESS) owned by electric Distribution System Opera-
tor (DSO), aggregator entity or ancillary service provider is ex-
pected to deal with power quality, energy loss in the network,
Demand Response (DR) service and/or other services, such as
reactive power injection. For this category, optimal placing of
the storage within the network becomes a decision key and
a game changer to benefit both service provider as well as
the end-users. Given huge improvements in prediction models
thanks to the breakthroughs made in Artificial Intelligence
(AJ) field [4], BESS control could be instructed considering in
distance of days before or even weeks. Looking at the BESS
controller as a black-box, the main inputs of the system can
be load consumption, RES generation and energy price table,
both for private and commercial usage [5], [6].
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There have been huge number of research works around
the optimization methods addressing electrical network issues,
which can consider only single objective (e.g., only losses [7]
or reliability [8]) or multi-objective (e.g., losses and reliability
[9]). The metaheuristic algorithms [10], inspired by the natural
processes, have been successfully applied to the vast area
of those problems and proven high sufficiency in term of
search result as well as computation burden. The work [6]
uses Ant Colony Optimization (ACO) to find the best schedule
for BESS. The authors imitated the Stigmergy between ants
via pheromone as heuristic information, to find the best
State-of-Charge (SoC) path throughout the time. They made
a comprehensive study over various ACO implementation
strategies. In [11] an hybrid approach is introduced using
mainly Particle Swarm Optimization (PSO) for the storage
scheduling. This optimization method is also used in [12] to
address ESS and RES operations. Simulated Annealing (SA)
is another popular method that can be adapted to the electrical
system optimization problems as well [13] There are several
works using Genetic Algorithm (GA), such as [14] that is a
comprehensive work on optimal sizing and siting the ESS in
the LV grid. Other works shown the scheduling of ESS via
GA optimization, such as in [15] to handle peak demand, in
[16] to reduce energy cost and in [17] to integrate plug-in EV
fleet in the grid.

This paper introduces a novel hybrid optimization algorithm
to solve i) sizing, ii) placement and iii) operation of arbitrary
storage systems and it is organized as follows: Section II
presents a brief overview of GA and Constraint Programming
(CP), whereas Sections III and IV focus on the applied
methodology for battery planning and scheduling, respectively.
Section V describes the considered case study and the obtained
results, while the conclusion are shown in Section VI.

II. HEURISTIC METHODS: GENETIC ALGORITHM AND
CONSTRAINT PROGRAMMING

This section aims to show the combined use of GA and CP
(Section II-C) , by firstly introducing the basic concepts for
both the methods (Section II-A and Section II-B).



A. Genetic Algorithm (GA) Optimization

The optimization based on GA is inspired by natural se-
lection and evolution of species [10]. In this context, the
chromosomes (i.e., solutions) are combined together through
a genetic operator called crossover. The solutions that result
the best objective function values have higher probability to be
selected for the crossover, so they can pass their characteristics
to the next generations (allowing to reach the global optimum).
Thanks to the application of another operator called mutation
it is possible to avoid falling into possible local minima.

The evaluation of objective function (called fitness) is
defined according to the problem features, but the solution
feasibility remains an issue, due to application of the genetic
operators (i.e., crossover and mutation). In order to handle this
issue, one of the most common techniques involves the use
of penalty functions [18]: if specific solution is not feasible,
a penalty factor is added to the fitness function, so that the
specific chromosome is penalized and likely fails to be selected
in the next generation. Although adding a penalty factor is a
simple way of implementation, the model might be misled
since problem cannot distinguish the cause that would lead
to discard a solution (i.e., the value of fitness or feasibility
reason).

B. Constraint Programming (CP)

CP has been used as a heuristic optimization algorithm,
in which the feasibility of every solution is guaranteed, even
though the optimality is not [19]. Setting off each single vari-
able, the local constraints are being propagated until meet the
global constraints. This action is called constraint propagation
that yields a pruned domain (variable range) and is being
repeated ending to no-further new decision can be made. The
resulting solution may not be the optimal one, but it is at least
feasible, while respects either local and global constraints.
This, based on the available resources (computational effort
and time) can be iterated without any information inherited
from one attempt to another.

C. Hybrid GA plus CP

The problems of optimal planning and operating of BESS
in electricity distribution system are non-convex and generally
hard to map into convex problems, especially in case of
multi-objective optimization formulation. In this paper, the
optimization model uses the GA as search engine whereas
the CP routine supervises initialization of solutions (initial
population), combination (crossover) and random insertion
(mutation) of those solutions (chromosomes). As mentioned
earlier, the solution algorithm covers two completely different
aspects: the planning of BESS (i.e., siting and sizing) which
will be explained in Section III, and the optimal scheduling
of BESS, which will be detailed in Section IV.

III. BESS SIZING AND SITING

A. Objective function and constraints of the problem

The optimization model in a first step discovers the optimal
placement options for BESS, by considering a long-term (i.e.

yearly) horizon of hourly RES generation and load consump-
tion. The goal consists in alleviating voltage deviation and
power losses, as shown in eq.(1):

IlliniIISliZG f(l‘, E,, ch) = aViev + BPloss (1)
e

where x indicates the installation node and S is a set of
possible nodes where the BESS can be connected to, within a
known section of the grid. The set S is formed by v elements.
The variables E, and P, stand for BESS capacity installed in
the node = and the corresponding converter nominal power,
respectively. In eq.(1), the two variables « and 3 represent
the weights used for considering both voltage deviation (Ve,)
and power losses (F,ss) obtained after inserting the BESS in
the node x in a unique objective function. In this study, the
charging and discharging rates of the battery are identical and
the power P, refers to the entire storage system composed of
battery cells and converter installed in the node . The bidirec-
tional converter and battery cells efficiencies are fixed values
and are considered not sensitive with respect to temperature,
energy level and flowing power.

The BESS capacity E, in every node is subject to prede-
fined limits linked to the position of the node = with respect
to the slack node, as shown in eq.(2).
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The variables E™" and E™% might be set according
to a financial/technical analysis, but for sake of simplicity,
in this case study, they are predefined values. In eq.(2) the
distance from slack | has been introduced. It represents the
layer at which the node x belongs to. The layer referred
to the slack bus is equal to O and so no BESS can be
installed in it (excluding substation). For nodes in layers [ # 0,
potential installation capacity limit is lower as they are more
remote from the slack bus. The factor [ can be retrieved
from network incident matrix L, describing the radial network.
Finally, the coefficients a; refer to the ¢ order polynomial
formulation (arbitrarily chosen by the user, here ¢ = 1) used
for determining the maximum boundary value of the BESS
capacity E,. The above formulation bounds in turn P, value
definition as in eq.(3).

Fb'lEx S |Pm| S HQEx (3)

The charging/discharging rate of battery cells, in general
are characterized with C),;. meaning that a battery with
ncCrate and npCpqre can be at fastest charged in 1/n¢ and
discharged in 1/np hour, and normally nc < np. In this
study, we extend such terminology for complex BESS where
Kk ranges are varied regarding specific applications rather than
electrochemical properties: for example, in case of a utility
BESS used for primary frequency regulation, the response
should be fast enough and so may acquire high range of x,
that exceed the identity, meaning that the BESS capacity can
be filled up and/or discharged in a fraction of hour, while in
case of self-consumption exploitation, these rates are lower
than 1 [20].

st. E™MM < B, < 2



B. GA formulation

1) Initialization of the population: The GA is based on
a population composed of © chromosomes, each of them
containing ¥ genes, as shown in eq.(4).

Gt = [REp]" @
It is worth to note that the number of chromosomes ©
can be higher than eligible nodes to install BESS v. Each
chromosome represents a BESS, and in this case study, with
U = 3, the genes of every chromosome represent the location
(i.e., the node x), the capacity of battery F, and its power P,
respectively.

G is created by a CP routine:  is a vector containing all
eligible nodes at least once, then according to the eq.(2) vector
E is generated randomly but respecting global constraints, and
propagates local constraint for p vector according to ncChrate
and npC).qe coefficients.

For hosting the objective function values, an additional
placeholder vector is added to the matrix G, which at the
beginning of optimization process is set to the infinity (390),
as in eq.(5).

Goxvin =[G =] (%)

2) Calculation of the objective function and the fitness:
Once the initial population is created, the classic process of
search begins, but with additional CP supervision. At the
iteration k, each chromosome G(¢,1: V), ¢ =1,..,0 is the
input of network model, that allows to calculate the voltages
and power losses along all the year after having introduced that
particular BESS (which performs charging and discharging
through a dumb hysteresis control), as shown in eq.(6).

Viev,9, Pioss,9 < Model(G(9,1 : ¥)), ford =1,...,0 (6)

Where V., and P, are the input used for calculating the
objective function fy for every chromosome, as in eq 1, and
its inverse (the so-called fitness) becomes part of the matrix
G:

G(,ﬁ’ M + ]-) = 1/f19 = 1/(05Vdev,19 + ﬁ-Ploss,ﬁ) (7)

3) Genetic operators (selection, crossover and mutation):
A classic biased roulette wheel method, based on the value
of fitness, is used for selecting the chromosomes forming
a new population, i.e., Gjey. From the new population, a
number 7, of parents are extracting and forming the matrix
II, of dimensions n, x ¥, by comparing a threshold p¢c
with a random extraction from a uniform distribution function
U(]0,1]): if the number extracted is lower than pc, then that
chromosome will be a parent otherwise not. The extraction
is repeated for the successive chromosomes with the same
logic. At the end of crossover routine, 1, chromosomes will
be substituted by the ones obtained through the recombination
of parents. On basis of the chosen parents, a new matrix R
contained the recombined chromosomes is defined. Every pair

of parents extracted, is cut in one position ¢ € 1, .., U, selected
randomly. Every row of the matrix R is then defined as:
R(h,1:V¥) =

[MI(h,1:¢) TI(h+1,c+1:%)] (8)

R(h+1,1:0)=TI(h+1,1:¢) I(h,c+1:T)] (9
with h = 2r + 1,7 € N representing odd numbers.

After that, the matrix G is getting updated as Goxw)
G.,. If the crossover, by changing the node, affects the
BESS’s total capacity, by violating eq.(2), a saturation is
made for making the configuration feasible. Consequently, this
saturation on the energy imposes limits to the nominal power
of the connected converter (according to the eq.(3)) as well;
The constraints propagate only to the right.

In the mutation step, some points in the matrix Gexw)
are randomly chosen by extracting, for every gene, a random
number which is compared with a probability of mutation p,,,.
Also in this case, the boundaries imposed by eq.(2) and eq.(3)
rules should be respected, in such a way that the mutation
does not create any unfeasible solution.

After mutation, new population is the input for electrical
model solver described in eq.(6), and the cycle continues.

4) Stop criterion: The stop criterion is reached if the
standard deviation of the objective function calculated for the
last M iterations is lower than a certain threshold €.;,..

1 M
€err = Z max(f; — f)) (10)
z:l

with f indicating the vector containing the mean values of the
objective functions in the last M iterations. As a last source
for the stopping, it is also imposed a maximum number of
iterations.

IV. OPERATION SCHEDULING

After finding the best position and configuration of the
BESS looking long-range horizon (i.e., yearly-based), in a
second phase of objective becomes the evaluation of the
optimal day-ahead scheduling for the installed BESS. The core
of solving problem remains the novel hybrid GA + CP, but the
mathematical formulation is different.

The dispatching matrix is composed of three dimensions,
i.e., considered time slots (which maximum value is indicated
as Ts) , number of BESS considered (n = 1...Npgss)
and number of feasible solutions considered N. In practice,
the method generates a number of charging and discharging
profiles during time, by considering different number of BESS
installed.

The SoC' is the decision variable, since explicitly contains
other information: in fact, indicating At as the generic time
step duration, SoC} can be described as a function of the
states SoC_1 and SoC}41, complying cells’ characteristics



and the power converter features, as shown in eq.(11), both
for charging and discharging:

son (ASeC Pnom At
SoChay — " (730 )T < SoCy, <

Sgn(ASoC Pnom - At

SoCiar + " 3

The 7 is a byproduct of two efficiencies, i.e., battery pack
and converter, which are still doubled in a charge-discharge
back and forth energy flow. On the other hand, degradation
matters, especially for battery cells. This is sometimes simpli-
fied e.g. in [15] or often neglected e.g. in [16].

In charging status the efficiency term 7, appears in nomi-
nator, while in discharging, will pop up in denominator of the
above equation. In eq.(11) charging and discharging efficiency
are considered identical.

Scheduling process is similar to planning step: a CP routine
generates O, feasible solutions (chromosomes) and these
solutions undergo to evaluation and evolution process. In this
case, chromosomes are composed of T genes, each of them
representing the SoC level of a BESS in every time step
7 of the simulation window. Tensors (i.e., 3D matrices) in-
volved in processes are the lower bound tensor L, ,5¢,N,7.)>
the upper bound tensor Uy 455, n.1,), the slot order tensor
O(Ngpss,N,T,) (Which initializes the order of time slots to be
set) and the SoC' tensor S(n, ,s5,N,7,)- The procedure allows
to reduce the space of search of the solutions, thanks to the
successive update of the lower and upper bound tensors.

Let’s suppose to consider the BESS b (b€ 1,..., Npgss)
and the time step 7: the chromosome n (n € 1,...,N) is
built following sequences in Oy 45, N,7.)> through a random
extraction from a uniform distribution constrained by the upper
and lower bound as in eq.(12).

Sb,n,‘r ~ U([‘cb,n,r ) ub,n,r])

Starting from the time step 7 a constraint propagation on the
upper bound U is applied towards right, as shown in eq. 13:

13)

where ASoC™** represents the maximum state-of-charge that
can be withdrawn/injected in one slot of time. The term a,, is
defined in eq.(14) and is a vector containing all the time slots
from 7 to T§:

an

12)

ub,n,T:TS =M - ASoC™ . ay + Socb,n,‘r

a, = {veN|(1,Ts — 7))} (14)

Likewise, lower bound L filters the right hand side with the
operation in eq. 15;
ASoC™ . a,
b

The constraint propagation proceeds at the left side with
respect to the point 7 as in eq.(16).

by’ - J- ASoCmax
v

L:b,n,T:TS = Socb,n,‘r - (15)

ub,n,l:‘r = + SOCb,n,‘r (16)

The vector b, contains all the time slots from one to 7 as in
eq.(17).

by = {v e N|([1, 7))} (17)

J is the adversarial matrix and is defined as in eq.(18).

1
Jij=14"
5] {07

The same left side propagation occurs for lower bound L,
that can be seen in eq.(19).

j=n—i+1

j#En—i+1 (%)

Lynir = S0Chpr —mp-by’ - J-ASoC™ ™ (19)

Finally, £ and U are saturated between zero and one, by
applying eqgs. 21 and 20, respectively.

Ly <+ max(Ly.,,0) (20)

Uy, minUyn, 1) (1)

The initial population, that is a set of feasible BESS SoC,
through proposed method covers the search space in a uniform
and homogeneous formation, as those chromosomes are set in
a random order. An initial population of 100 chromosome,
each formed with 24 genes (hours) is depicted in Fig. 1, for
two distinct BESS with different s, or in other word %Z’ that
is selected based on the specific usage of the battery.

Initial Population

Chromosomes

&
| 0.4
I 02

(a) Low g—f rate BESS, e.g. used for utility energy time shift

Initial population
1 .

L

< Ay e N

Chromosomes

(b) High g—z rate BESS, e.g. for frequency regulation usage

Fig. 1: Uniform distribution of solution within search space.

GA search and evolution is being carried out respecting
the main steps, starting from solution evaluation, that is, the
improvement of electrical quality and service metrics. In the
evaluation, each BESS is intended to operate in favor of in-
stallation node x: therefore, the node’s downstream aggregated
profile plus the resulting BESS power becomes the subject
of optimization. This is proceed first deriving BESS power
through eq.(22).



P, =" V59 Ly, 80C - E, 22)

The fitness functions and then the score columns are cal-
culated regarding the objective(s) formulation, as eq. 7.All
process is quite the same as planning routine, with a different
tensor of G(Npgss, N, Ts).

In crossover, recombination (the same as in eq.(8)) occurs
with the constraint propagation again, applies filtering to the
right side of cross point ¢ for the parent n + 1 (II,41) by
the mean of temporary upper and lower bounds (Lcpp and
Uyemyp) that practically executes the same eqgs.(13) to 19, where
the 7 point becomes crossover point c.

Finally ¢ gets pruned by those Licpmp, Uremp instead of T
and 0. The notations are brought in eq. 23.

Ger < min(g?rvutemp)
ggr — max(gg,, Etemp)

Again G, , < G updates the chromosomes subject to
Crossover.

Mutation for point m is fulfilled by first applying m — 1
and m + 1 local constraints as in eq.(24).

(23)

lowLim = max(Gpn,i—1,Gbn,it1) — 77%,/ - ASoC™® 24
highLim = min(Gyn,i—1,Gbn,i+1) + 1 - ASoC™*"

The term y is defined in the eq.(refeq:w):

y = sg(Gpn,it1 — Gon,i—1) (25)

So, the value of mutation locus can be between filtered limits,
as in eq.(26).
G ~U([lowLim,highLim]) (26)

The solutions converge towards to global optima, the Fig. 2
depicts this matter in an intuitive way.

1000 Generation los

Chromosomes

(a) Low EP—*r rate BESS, e.g. utility energy time shift

1000"Generation

Chromosomes

(b) High g—z rate BESS, e.g. frequency regulation usage

Fig. 2: Convergence of the feasible solutions.
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Fig. 3: Low voltage rural distribution feeder.

V. CASE STUDY AND RESULTS

As simulation base-ground, a rural Low Voltage (LV) feeder
has been modeled which is subject to critical voltage deviation
and also unbalance (considerable neutral load) due to high
penetration of solar power, long distances from substation
and heavy unbalance load distribution. This feeder contains
residential and agricultural electricity consumers.

The feeder schema is shown in the Fig. 3. The transformer
substation is not depicted in the graph.

For the first part of optimization i.e. sizing and siting BESS,
a simulation horizon of one year with one hour granularity is
set, consequently load and solar generation profiles contain
yearly patterns.

Not all nodes in this system are eligible to BESS installa-
tion. There is assumed a priori a table of allowed nodes to
accommodate BESS in, with determined application of the
BESS being installed, e.g. Utility Energy Time Shift, Self
RES consumption and Support of Voltage Regulation. The
problem in absence of voltage deviation mitigation, in other
word aVye, < BPess tends to place the BESS close to the
distribution substation, but as the weight of V., increases the
search convergence alters.

Once the storage(s) is placed in the best site, one day
optimal scheduling problem with 1 hour resolution is resolved.
Objective here is to establish voltage at the connected bus.

Soon, mate pool is being dominated by some of the remote
nodes as it can be clearly seen in Fig. 4. From this figure
that shows only parents, contains all nodes, various capacity
and powers in the initial generation, then gradually nodes with
lower impact on voltage correction are excluded.

Fig. 5, instead, reports the selection probability (in PDF) of
nodes in optimization progress, where is possible to see that
some of the nodes are completely excluded after a while.

VI. CONCLUSION

This paper introduced a hybrid optimization algorithm,
designed by considering both the planning phase and the
optimanl operation of BESS in the electrical grid. The shown
case study investigated the application of the method in a LV
network to prove algorithm performance.
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This work represents the basis for creating an effective op-
timization platform that can support storage units deployment
in the smart grid framework. The next steps to achieve this
purpose are: i) to consider a wider portion of the grid, subject
to additional problems, to stress the use of the algorithm and
to further improve it; ii) to deeply study the optimization
algorithm to set in optimal way all elements; iii) to use more
detailed ESS, by also taking into account novel conversion
systems such as power-to-gas [21] plants; and iv) to introduce
a detailed economical/financial analysis for addressing the
optimization by considering economic aspects as well. All the
above points will be reached thanks to the proper implemen-
tation of the algorithm in a parallel computation framework
that will be customized for the system under analysis.
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