9 research outputs found

    Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases

    No full text
    Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases

    Climate projections of the Adriatic Sea: role of river release

    No full text
    The Adriatic Sea, characterized by unique local features in comparison to the broader Mediterranean Sea, stands out as a highly susceptible region to climate change. In this context, our study involves a focused climate downscaling approach, concentrating on the Adriatic water cycle. This encompasses integrated modeling at the mesoscale, covering the atmosphere, hydrology, and marine general circulation. The study period spans from 1992 to 2050, considering the high emission scenario RCP8.5. We aim at evaluating how the river release projection affects the local density stratification and the sea level rise. Indeed, the river release is found to decrease by approximately 35% in the mid-term future and condition the stratification of the water column with differences between the Northern and Southern sub-basins. The projected runoff decrease has a major impact on the Northern sub-basin, where the stratification is haline-dominated and the foreseen salinization prevails on the heating through the whole water column. Conversely, the runoff decrease has a lower impact on the Southern sub-basin, where the future changes of other mechanisms may play a major role, e.g., the changing properties of the Mediterranean water entering the Otranto Strait and the foreseen heating prevails on the salinization from the intermediate to deep water column. The study provides the first evidence of how the decreasing river discharge locally reduces the density stratification, increases the dense water, and mitigates the sea level rise in the Northern Adriatic Sea, thus acting in the opposite direction to the global warming. To minimize uncertainty in coastal ocean projections around the world, it is essential that the climate downscaling integrates high-resolution hydrology and hydrodynamics models to correctly reproduce the link between surface buoyancy and stratification and the resulting dynamics

    Data_Sheet_2_Climate projections of the Adriatic Sea: role of river release.ZIP

    No full text
    The Adriatic Sea, characterized by unique local features in comparison to the broader Mediterranean Sea, stands out as a highly susceptible region to climate change. In this context, our study involves a focused climate downscaling approach, concentrating on the Adriatic water cycle. This encompasses integrated modeling at the mesoscale, covering the atmosphere, hydrology, and marine general circulation. The study period spans from 1992 to 2050, considering the high emission scenario RCP8.5. We aim at evaluating how the river release projection affects the local density stratification and the sea level rise. Indeed, the river release is found to decrease by approximately 35% in the mid-term future and condition the stratification of the water column with differences between the Northern and Southern sub-basins. The projected runoff decrease has a major impact on the Northern sub-basin, where the stratification is haline-dominated and the foreseen salinization prevails on the heating through the whole water column. Conversely, the runoff decrease has a lower impact on the Southern sub-basin, where the future changes of other mechanisms may play a major role, e.g., the changing properties of the Mediterranean water entering the Otranto Strait and the foreseen heating prevails on the salinization from the intermediate to deep water column. The study provides the first evidence of how the decreasing river discharge locally reduces the density stratification, increases the dense water, and mitigates the sea level rise in the Northern Adriatic Sea, thus acting in the opposite direction to the global warming. To minimize uncertainty in coastal ocean projections around the world, it is essential that the climate downscaling integrates high-resolution hydrology and hydrodynamics models to correctly reproduce the link between surface buoyancy and stratification and the resulting dynamics.</p

    Data_Sheet_3_Climate projections of the Adriatic Sea: role of river release.ZIP

    No full text
    The Adriatic Sea, characterized by unique local features in comparison to the broader Mediterranean Sea, stands out as a highly susceptible region to climate change. In this context, our study involves a focused climate downscaling approach, concentrating on the Adriatic water cycle. This encompasses integrated modeling at the mesoscale, covering the atmosphere, hydrology, and marine general circulation. The study period spans from 1992 to 2050, considering the high emission scenario RCP8.5. We aim at evaluating how the river release projection affects the local density stratification and the sea level rise. Indeed, the river release is found to decrease by approximately 35% in the mid-term future and condition the stratification of the water column with differences between the Northern and Southern sub-basins. The projected runoff decrease has a major impact on the Northern sub-basin, where the stratification is haline-dominated and the foreseen salinization prevails on the heating through the whole water column. Conversely, the runoff decrease has a lower impact on the Southern sub-basin, where the future changes of other mechanisms may play a major role, e.g., the changing properties of the Mediterranean water entering the Otranto Strait and the foreseen heating prevails on the salinization from the intermediate to deep water column. The study provides the first evidence of how the decreasing river discharge locally reduces the density stratification, increases the dense water, and mitigates the sea level rise in the Northern Adriatic Sea, thus acting in the opposite direction to the global warming. To minimize uncertainty in coastal ocean projections around the world, it is essential that the climate downscaling integrates high-resolution hydrology and hydrodynamics models to correctly reproduce the link between surface buoyancy and stratification and the resulting dynamics.</p

    Data_Sheet_4_Climate projections of the Adriatic Sea: role of river release.PDF

    No full text
    The Adriatic Sea, characterized by unique local features in comparison to the broader Mediterranean Sea, stands out as a highly susceptible region to climate change. In this context, our study involves a focused climate downscaling approach, concentrating on the Adriatic water cycle. This encompasses integrated modeling at the mesoscale, covering the atmosphere, hydrology, and marine general circulation. The study period spans from 1992 to 2050, considering the high emission scenario RCP8.5. We aim at evaluating how the river release projection affects the local density stratification and the sea level rise. Indeed, the river release is found to decrease by approximately 35% in the mid-term future and condition the stratification of the water column with differences between the Northern and Southern sub-basins. The projected runoff decrease has a major impact on the Northern sub-basin, where the stratification is haline-dominated and the foreseen salinization prevails on the heating through the whole water column. Conversely, the runoff decrease has a lower impact on the Southern sub-basin, where the future changes of other mechanisms may play a major role, e.g., the changing properties of the Mediterranean water entering the Otranto Strait and the foreseen heating prevails on the salinization from the intermediate to deep water column. The study provides the first evidence of how the decreasing river discharge locally reduces the density stratification, increases the dense water, and mitigates the sea level rise in the Northern Adriatic Sea, thus acting in the opposite direction to the global warming. To minimize uncertainty in coastal ocean projections around the world, it is essential that the climate downscaling integrates high-resolution hydrology and hydrodynamics models to correctly reproduce the link between surface buoyancy and stratification and the resulting dynamics.</p

    Data_Sheet_1_Climate projections of the Adriatic Sea: role of river release.ZIP

    No full text
    The Adriatic Sea, characterized by unique local features in comparison to the broader Mediterranean Sea, stands out as a highly susceptible region to climate change. In this context, our study involves a focused climate downscaling approach, concentrating on the Adriatic water cycle. This encompasses integrated modeling at the mesoscale, covering the atmosphere, hydrology, and marine general circulation. The study period spans from 1992 to 2050, considering the high emission scenario RCP8.5. We aim at evaluating how the river release projection affects the local density stratification and the sea level rise. Indeed, the river release is found to decrease by approximately 35% in the mid-term future and condition the stratification of the water column with differences between the Northern and Southern sub-basins. The projected runoff decrease has a major impact on the Northern sub-basin, where the stratification is haline-dominated and the foreseen salinization prevails on the heating through the whole water column. Conversely, the runoff decrease has a lower impact on the Southern sub-basin, where the future changes of other mechanisms may play a major role, e.g., the changing properties of the Mediterranean water entering the Otranto Strait and the foreseen heating prevails on the salinization from the intermediate to deep water column. The study provides the first evidence of how the decreasing river discharge locally reduces the density stratification, increases the dense water, and mitigates the sea level rise in the Northern Adriatic Sea, thus acting in the opposite direction to the global warming. To minimize uncertainty in coastal ocean projections around the world, it is essential that the climate downscaling integrates high-resolution hydrology and hydrodynamics models to correctly reproduce the link between surface buoyancy and stratification and the resulting dynamics.</p
    corecore