104 research outputs found

    Analysis of the molecular mobility of collagen and elastin in safe, atheromatous and aneurysmal aortas

    Get PDF
    Aim of the study : In this study, we propose to use a thermal technique, Differential Scanning Calorimetry (DSC) to follow the evolution of elastin and collagen in safe and pathological cardiovascular tissues. Patients and methods : The first part of this study deals with the analysis of the elastin network and associated proteins during ageing (from children to old persons) in aortic walls. The second part is devoted to the characterization of the collagenic phase in aneurysms. In both cases, physical data are correlated with biochemical analyses. Results and conclusion : For old persons aortas with atheromatous stades, elastin and associated proteins are found to interpenetrate to form a homogenous phase. Abdominal aortic aneurysms (AAA) are characterized by structural alterations of the aortic wall resulting from the degradation of elastic fibers and an increase of collagen/elastin ratio. Notable modifications are evidenced between collagen from control tissue and collagen from AAA, particularly concerning the thermal denaturation. Biochemical and thermal results are compatible with the increase of new collagen deposition and/or impairment of the collagen phase stability in the extracellular matrix of AAAs

    Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Get PDF
    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality

    Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Get PDF
    Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds

    Correlations between the alpha-Gal antigen, antibody response and calcification of cardiac valve bioprostheses: experimental evidence obtained using an alpha-Gal knockout mouse animal model

    Get PDF
    IntroductionPreformed antibodies against αGal in the human and the presence of αGal antigens on the tissue constituting the commercial bioprosthetic heart valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the implanted BHV, leading to deterioration and calcification. Murine subcutaneous implantation of BHVs leaflets has been widely used for testing the efficacy of anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted into a murine model will not be able to elicit an αGal immune response because such antigen is expressed in the recipient and therefore immunologically tolerated.MethodsThis study evaluates the calcium deposition on commercial BHV using a new humanized murine αGal knockout (KO) animal model. Furtherly, the anti-calcification efficacy of a polyphenol-based treatment was deeply investigated. By using CRISPR/Cas9 approach an αGal KO mouse was created and adopted for the evaluation of the calcific propensity of original and polyphenols treated BHV by subcutaneous implantation. The calcium quantification was carried out by plasma analysis; the immune response evaluation was performed by histology and immunological assays. Anti-αGal antibodies level in KO mice increases at least double after 2 months of implantation of original commercial BHV compared to WT mice, conversely, the polyphenols-based treatment seems to effectively mask the antigen to the KO mice’s immune system.ResultsCommercial leaflets explanted after 1 month from KO mice showed a four-time increased calcium deposition than what was observed on that explanted from WT. Polyphenol treatment prevents calcium deposition by over 99% in both KO and WT animals. The implantation of commercial BHV leaflets significantly stimulates the KO mouse immune system resulting in massive production of anti-Gal antibodies and the exacerbation of the αGal-related calcific effect if compared with the WT mouse. DiscussionThe polyphenol-based treatment applied in this investigation showed an unexpected ability to inhibit the recognition of BHV xenoantigens by circulating antibodies almost completely preventing calcific depositions compared to the untreated counterpart

    Technical and Functional Validation of a Teleoperated Multirobots Platform for Minimally Invasive Surgery

    Get PDF
    Nowadays Robotic assisted Minimally Invasive Surgeries (R-MIS) are the elective procedures for treating highly accurate and scarcely invasive pathologies, thanks to their abil- ity to empower surgeons\u2019 dexterity and skills. The research on new Multi-Robots Surgery (MRS) platform is cardinal to the development of a new SARAS surgical robotic platform, which aims at carrying out autonomously the assistants tasks during R- MIS procedures. In this work, we will present the SARAS MRS platform validation protocol, framed in order to assess: (i) its technical performances in purely dexterity exercises, and (ii) its functional performances. The results obtained show a prototype able to put the users in the condition of accomplishing the tasks requested (both dexterity- and surgical-related), even with rea- sonably lower performances respect to the industrial standard. The main aspects on which further improvements are needed result to be the stability of the end effectors, the depth per- ception and the vision systems, to be enriched with dedicated virtual fixtures. The SARAS\u2019 aim is to reduce the main surgeon\u2019s workload through the automation of assistive tasks which would benefit both surgeons and patients by facilitating the surgery and reducing the operation time

    Unilateral Pelvic Lymph Node Dissection in Prostate Cancer Patients Diagnosed in the Era of Magnetic Resonance Imaging-targeted Biopsy: A Study That Challenges the Dogma

    Get PDF
    PURPOSE: Bilateral extended pelvic lymph node dissection at the time of radical prostatectomy is the current standard of care if pelvic lymph node dissection is indicated; often, however, pelvic lymph node dissection is performed in pN0 disease. With the more accurate staging achieved with magnetic resonance imaging-targeted biopsies for prostate cancer diagnosis, the indication for bilateral extended pelvic lymph node dissection may be revised. We aimed to assess the feasibility of unilateral extended pelvic lymph node dissection in the era of modern prostate cancer imaging. MATERIALS AND METHODS: We analyzed a multi-institutional data set of men with cN0 disease diagnosed by magnetic resonance imaging-targeted biopsy who underwent prostatectomy and bilateral extended pelvic lymph node dissection. The outcome of the study was lymph node invasion contralateral to the prostatic lobe with worse disease features, ie, dominant lobe. Logistic regression to predict lymph node invasion contralateral to the dominant lobe was generated and internally validated. RESULTS: Overall, data from 2,253 patients were considered. Lymph node invasion was documented in 302 (13%) patients; 83 (4%) patients had lymph node invasion contralateral to the dominant prostatic lobe. A model including prostate-specific antigen, maximum diameter of the index lesion, seminal vesicle invasion on magnetic resonance imaging, International Society of Urological Pathology grade in the nondominant side, and percentage of positive cores in the nondominant side achieved an area under the curve of 84% after internal validation. With a cutoff of contralateral lymph node invasion of 1%, 602 (27%) contralateral pelvic lymph node dissections would be omitted with only 1 (1.2%) lymph node invasion missed. CONCLUSIONS: Pelvic lymph node dissection could be omitted contralateral to the prostate lobe with worse disease features in selected patients. We propose a model that can help avoid contralateral pelvic lymph node dissection in almost one-third of cases
    corecore