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Introduction: Preformed antibodies against aGal in the human and the presence

of aGal antigens on the tissue constituting the commercial bioprosthetic heart

valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the

implanted BHV, leading to deterioration and calcification. Murine subcutaneous

implantation of BHVs leaflets has been widely used for testing the efficacy of

anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted

into a murine model will not be able to elicit an aGal immune response because

such antigen is expressed in the recipient and therefore immunologically

tolerated.

Methods: This study evaluates the calcium deposition on commercial BHV using

a new humanized murine aGal knockout (KO) animal model. Furtherly, the anti-

calcification efficacy of a polyphenol-based treatment was deeply investigated.

By using CRISPR/Cas9 approach an aGal KOmouse was created and adopted for

the evaluation of the calcific propensity of original and polyphenols treated BHV

by subcutaneous implantation. The calcium quantification was carried out by

plasma analysis; the immune response evaluation was performed by histology

and immunological assays. Anti-aGal antibodies level in KO mice increases at

least double after 2 months of implantation of original commercial BHV

compared to WT mice, conversely, the polyphenols-based treatment seems to

effectively mask the antigen to the KO mice’s immune system.
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Results: Commercial leaflets explanted after 1 month from KO mice showed a

four-time increased calcium deposition than what was observed on that

explanted from WT. Polyphenol treatment prevents calcium deposition by over

99% in both KO and WT animals. The implantation of commercial BHV leaflets

significantly stimulates the KO mouse immune system resulting in massive

production of anti-Gal antibodies and the exacerbation of the aGal-related
calcific effect if compared with the WT mouse.

Discussion: The polyphenol-based treatment applied in this investigation

showed an unexpected ability to inhibit the recognition of BHV xenoantigens

by circulating antibodies almost completely preventing calcific depositions

compared to the untreated counterpart.
KEYWORDS

aGal ant igen , knockout mouse mode l , b iopros thet ic hear t va lves ,
polyphenols, calcification
1 Introduction

Aortic valve disease is one of the most common valvular

pathologies (1) with a significantly high mortality rate in

symptomatic patients (the actual 5-year mortality with mild aortic

stenosis was 40.9% increasing to 52.2% for severe aortic stenosis)

(2). The most common cause of aortic valve disease in elderly

patients (60-80 years old) is calcific degeneration (3). The treatment

of choice is surgical (SAVR, surgical aortic valve replacement) or

transcatheter replacement (TAVR, transcatheter aortic valve

replacement) according to guidelines (4). Bioprosthetic heart

valves (BHV, also known as “tissue valves”) are the most used

type of device in more than 80% of all cases worldwide (3). BHVs

are made of bovine or porcine pericardium or leaflets valves and are

conventionally cross-linked with glutaraldehyde (GA) to ensure

tissue stability, reduce antigenicity, and maintain tissue sterility.

They are mainly used in patients older than 60 years of age where

the durability of the valve exceeds the life expectancy (5). The

functioning of BHVs is limited by shorter durability in younger

patients in whom the process of calcification is accelerated (6)

representing one of the limiting factors for their clinical application.

Traditionally, BHVs calcification has been attributed to

extrinsic factors such as the chemical instability of GA,

mechanical failure, and intrinsic ones like collagen degradation

and calcium precipitation by residual lipids (7, 8). In recent years,

the immune-mediate intrinsic pathway gained importance not least

because of a better understanding of the aGal xenoantigen trigger

(9–11).

Murine subcutaneous implantation of BHVs leaflets has been

widely used as an initial step for testing the efficacy of anti-

calcification treatments (12–15). However, unlike the situation in

humans, bovine pericardial leaflets tissues implanted into a

murine model will not be able to elicit an anti-Gal immune

response because both donor and recipient species constitutively
02
express aGal epitopes. Some studies have tried to demonstrate the

link between the presence of the aGal antigen and the propensity

to tissue calcification by comparing pericardial tissues samples

obtained from wild-type (WT) and aGal knockout (KO) pigs after

the explant from the mice subcutaneous area (16, 17). The aGal
KO pig is a genetically manipulated aGal-deficient animal in

which the gene responsible for the synthesis of the enzyme a1,3-
galactosyltransferase (GGTA1, which catalyzes the aGal

saccharide and proteins/lipids bond formation) has been

silenced. This genetic modification generates a sort of

“humanized” animal that is no longer able to synthesize the

aGal similarly to humans thus acquiring in turn the ability to

produce anti-Gal antibodies. However, this previous approach

(16, 17) is inherently limited as the implantation of biomaterials in

WT animals (constitutively expressing the aGal), is precluding

any immunological reaction towards the aGal antigen itself (18).

Considering what has been reported so far, it seems rational to use

genetically manipulated aGal-deficient animals, such as GGTA1-

KO mice, as recipient animal models. This could mimic the

human immunologic environment, and, to our knowledge, it

has not been used to test the efficacy of the treatments of

commercial BHVs to prevent the aGal-immune mediated

calcification seen in clinical practice (10).

The main objective of this study was to evaluate the amount of

calcium deposition in isolated leaflets from the commercial

Trifecta-GT BHV model (Abbot/St.Jude, Santa Clara, CA, USA)

implanted for 2 months in GGTA1 KO mice and compared with a

parallel investigation carried out for up to 4 months in WT (19).

Alike and at variance to this parallel report the study was further

extended to evaluate the anti-calcification efficacy of a polyphenol-

based treatment with specific attention to its ability to mask resident

antigens to circulating anti-aGal antibodies. Moreover, we have

investigated the level of possible residual aGal-epitope in several

tissue districts of the KO-mice considering that a residual amount
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of aGal epitope reactivity has been recognized in biallelic GGTA1-

knockout pig cells and implicated as a possible contributor to

chronic rejection of GGTA1-/- organs (20, 21).
2 Materials and methods

All animal experiments and surgical procedures were

performed in compliance with the Guide for the Care and Use of

Laboratory Animals as published by the US National Institutes of

Health (NIH Publication 85-23, revised 1996). The use of a mouse

animal model for experimental purposes was authorized by the

Italian Ministry of Health: project registration number 17E9C.154;

authorization number 542/2020-PR. The GGTA1 KO mouse

animal model is owned by Biocompatibility Innovation Srl. The

cloning was performed in collaboration with Polygene Transgenetic

(Rümlang, Switzerland) and the animals are currently housed at

Charles River Laboratories Italia (Lecco, Italy).
2.1 Cloning of C57Bl/6 aGal knockout mice

All the details are reported in the Supplementary

Material section.
2.2 aGal quantification in WT e KO
mouse tissues

Fresh tissue samples from the different tissues (Table 1) of WT

and KO mice were gently blotted on Whatman filter paper, and

their weight was recorded (weight range of about 100mg wet

weight). Subsequently, they were incubated with the primary anti-

aGal antibody M86 [1:50] (mouse; LSBio, Seattle, WA) for 2hs at

37°C with gentle stirring and finally centrifuged at 14.750g for

30min at 4°C.
Frontiers in Immunology 03
The number of aGal epitopes was quantified through a

patented ELISA test (22). Briefly, a Polysorp 96-well plate (Nunc,

Rochester, NY, USA) was coated with 100ml of alpha-Gal/HSA

(human serum albumin; Dextra Laboratories, Berkshire, UK), 5mg/
ml, for 2hs at 37°C. After washing three times with PBS, the

blocking procedure was performed using 300ml per well of 2%

HSA (Sigma, St. Louis, MO, USA) in PBS for 2hs, at room

temperature in darkness. Wells were then washed three times as

mentioned above. A set of wells was loaded with 100ml of

supernatant derived from tissue samples of wild-type (WT) and

KO mice and incubated overnight at 4°C in darkness. After

washing, the secondary HRP-conjugate antibody [1:500] (Dako

Cytomation, Glostrup, Denmark) was loaded. Finally, 100ml of

horseradish peroxidase substrate buffer was added to each well for

5min at room temperature in darkness. The plate absorbance was

measured by a plate reader at 450nm (Multiscan Sky, Thermo

Scientific). The number of epitopes was calculated by comparison

with a calibration line obtained using rabbit red blood cells (23).
2.3 Polyphenols-based treatment of
commercial pericardial leaflets

Briefly, a blend of polyphenols was solubilized in phosphate buffer

solution (PBS, 50mM NaH2PO4, 20mM Na2HPO4) at room

temperature as previously described (24–27). Bovine pericardial

leaflets isolated from the commercial Trifecta-GT BHV model

(Abbott, Plymouth, MN, USA) were allowed to briefly drain, rinsed

with PBS and transferred to the polyphenolic reagent solution, and left

to react under moderate constant stirring for two consecutive steps of

30min each, at room temperature in the dark. At the end of incubation,

the samples were subjected to two washes in isotonic phosphate buffer

for 15min each and stored at 4°C in PBS until the moment of

implantation. Samples subjected to the polyphenols-based are labeled

as F. As already disclosed previously, the chemical interactions between

the polyphenols and the tissue constituting the BHVs are investigated
TABLE 1 Comparison of the aGal quantification in different tissue districts of wild-type (WT) and GGTA1 KO (KO) mice animal model with the relative
percentage of aGal silencing (n=7 for each tissue district).

n° of a-Gal epitope/10mg of tissue

Tissue/Organ WT KO % of aGal silencing

Eye 7.68*1011 ± 0.08 0 100%

Thymus 5.26*1011 ± 0.05 0 100%

Tail 4.13*1011 ± 0.05 0 100%

Spleen 1.70*1011 ± 0.02 0 100%

Myocardium 1.52*1011 ± 0.02 2.08*1010 ± 0.01 86.3%

Kidney 1.53*1011 ± 0.03 2.76*1010 ± 0.02 82%

Lung 2.93*1011 ± 0.03 5.86*1010 ± 0.02 80%

Liver 2.05*1011 ± 0.06 4.1*1010 ± 0.03 80%

Skin 1.72*1011 ± 0.01 9.55*1010 ± 0.05 44.4%

Brain 3.35*1010 ± 0.02 1.87*1010 ± 0.02 44.2%
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1210098
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Naso et al. 10.3389/fimmu.2023.1210098
by FT-IR spectra and HR-MAS 13C-NMR, resulting mainly in the

covalent type with the formation of a very high number of hydrogen

bonds (19).
2.4 Mice subcutaneous implantation

Calcium quantification at 4 months in WT animals, performed

in a parallel investigation (20), demonstrated a non-statistically

significant difference between the amount of calcium quantified

after 2 and 4 months of tissue implantation in the subcutaneous

back area. Considering therefore the WT mouse as the primary

reference, it was reasonably decided to consider an implantation

time not exceeding 2 months. Alike and at variance to the parallel

investigation (20), GGTA1 KO mice (C57BL/6, 6 weeks old, 30g)

instead of WT mice were used.

After anesthetizing and shaving, a subcutaneous pouch was created

in the dorsal area for each mouse. Each not-treated (NT, n=16) and

polyphenols-treated (F, n=16) Trifecta-GT leaflet was implanted into

the pouch of each animal, and the wounds were closed with 6/0 nylon

sutures. After 1, and 2 months the mice were sacrificed under a CO2

atmosphere and the samples were carefully harvested.
2.5 Evaluation of anti-aGal antibodies
production in KO mice

Anti-aGal serum IgM and IgG antibodies from the aGal KO
mice were determined before and 2 months after implantation of

original and polyphenols-treated leaflets from Trifecta-GT, by

enzyme-linked immunosorbent assay (ELISA). About 0.5 – 1.0ml

of blood per mouse was collected by infraorbital venous plexus

sampling (n=10). A Polysorp 96-well plate (Nunc, Rochester, NY,

USA) was coated with 100ml of alpha-Gal/HSA (Bovine serum

albumin; Dextra Laboratories, Berkshire, UK), 5mg/ml, for 2hs at

37°C. After washing three times with PBS, the blocking procedure

was performed using 300ml per well of 2% HSA (Sigma, St. Louis,

MO, USA) in PBS for 2hs, at room temperature in darkness. Wells

were then washed three times as mentioned above. A set of wells

was loaded with 100ml of [1:80] diluted serum and incubated

overnight at 4°C in darkness. After washing, the secondary HRP-

conjugate anti-mouse IgM and IgG antibody [1:500] (Jackson

Immunoresearch, Pennsylvania, USA) were loaded. Finally, 100ml
of HRP substrate buffer was added to each well for 5min at room

temperature in darkness. The plate absorbance was measured by a

plate reader at 450nm (Multiscan Sky, Thermo Scientific).
2.6 Calcium quantification in explanted
commercial leaflets

Polyphenols-treated (F) and non-treated (NT) leaflets from

Trifecta-GT BHVs were carefully explanted from KO mice and

washed twice in sterile cold PBS for 10min. Specimens were

subsequently subjected to acid hydrolysis in HCl 6N at 110°C for

12hs. Calcium evaluation was performed in hydrolyzed samples by
Frontiers in Immunology 04
inductively coupled plasma according to the directives of the

EPA6010D method (28) and expressed as µg Ca2+/10mg of dry

defatted weight (ddw). As a control sample, calcium quantification

was also carried out in unimplanted off-the-shelves original Trifecta

GT™ valve leaflets.

Ddw was determined by comparing lyophilized dry-weight

samples before and after delipidation treatment. After the

lyophilization step, sample tissues were incubated for 36hs under

10 kPa over P2O5 at 37°C until a constant dry weight was attained.

The defatted procedure was carried out by incubation of tissue

specimens in ascending series of alcohols followed by two steps of

chloroform/methanol (2:1 and 3:1 v:v), in a descending series of

alcohols, and finally in the water.
2.7 Von Kossa staining in explanted
commercial leaflets

Representative polyphenols-treated (F) and non-treated (NT)

tissue samples explanted from WT (at 4 months of follow-up, n=4)

and KO (after 2 months of follow-up, n=4) mice were carefully

rinsed with cold PBS and subsequently embedded in OCT

compound (Tissue Tek; Sakura Finetek, Tokyo, Japan), cryo-

cooled in liquid nitrogen, and cut into 8mm cryosections. Sections

were stained with Von Kossa. The general appearance of the

extracellular matrix (ECM) and calcium deposition were examined.
2.8 Statistical analysis

The data were analyzed in Microsoft Excel® and Prism® 7 for

Windows (v7.03, GraphPad Software lnc., California) and

expressed as mean ± standard deviation (SD). A two-sided

unpaired T-test was used to assess significant differences between

the treated and untreated groups, at the 0.95 confidence level.
3 Results

3.1 aGal quantification in WT e KO
mouse tissues

As reported in Table 1, the GGTA1 gene silencing inhibited

aGal antigen synthesis in a non-uniform manner, ranging from

100% to 80%, depending on the tissue district. For both the skin and

the brain samples, the inhibition of the antigen expression was

limited to 44%. Interestingly, the brain of the WT mouse exhibits

the lowest number of aGal antigens while accounting for the same

epitope amount determined in the KO mouse after gene silencing.
3.2 Evaluation of anti-aGal antibodies
production in KO mice

As a result of food intake during housing, the GGTA1 KO mice

develop a bacterial flora expressing the aGal antigen, thus leading to
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the onset of a baseline level of IgG and IgM anti-aGal antibodies.
This baseline level appeared to be further increased following

the implantation of the Trifecta-GT leaflets (comprising

glutaraldehyde-treated bovine pericardium) previously reported to

contain a significant amount of this antigen (11). In this specific

case, the 2 months of permanence of the implants in the mouse

subcutis, doubled the level of circulating anti-Gal IgG and more

than tripled that of IgM (Figure 1, BL vs NT). Particularly, the

polyphenol-based treatment demonstrated the ability to make the

treated tissue “undetectable” to the mouse’s immune system while

preventing the increase of anti-Gal antibody levels otherwise

observed in the case of NT samples implantation: there were no

statistically significant differences between the IgG and IgM baseline

levels found after 2 months of implantation of the polyphenols-

treated leaflets (Figure 1, BL vs F).
3.3 Calcium quantification in explanted
commercial BHV leaflets

In Trifecta-GT leaflets explanted from the KO mice, a relevant

calcium deposition (Figure 2, grey bar) was evident even after one

month and accounted for more than four times the amount found

in the WT mouse at the same time (1 month KO vs 1 month WT

p=0.015). The intensity of mineralization increased after two

months, it was not significantly different from that determined in

the WT mouse at the same time and comparable to that determined

in the 4-month WT model. Again, similarly to what was already

evidenced in the WT mouse, the polyphenols-based treatment

exhibited a strikingly evident anti-calcification effect even in the

KO-F samples. The surprisingly efficient treatment with

polyphenols appears to prevent by over 99% the calcium

deposition in both WT and KO animal models.
Frontiers in Immunology 05
3.4 Von Kossa staining in explanted
commercial leaflets

The histological evaluation of calcium deposition, in some

representative explanted leaflets (Figure 3), was found to be in

line with the results of plasma analysis (Figure 2). In general, the

non-treated leaflets (NT) exhibited unevenly diffused micro-

calcifications. Their counterparts, treated with polyphenols (F),

did not show calcified spots even when calcium content

accounted for about 0.3 mg/10mg of ddw. It is known that the

sensitivity of the quantitative Inductive Coupled Plasma technique

is considerably higher than the histological evaluation. Particularly,

the calcium content of the F leaflets resulted below the detection

limit of the Von Kossa staining, besides the fact that, unexpectedly,

it was even significantly lower than that determined in the untreated

control group samples before implantation.
4 Discussion

GA is often used as the preferred fixative and sterilizing agent

for many commercial bioprosthetic products, unfortunately, the GA

chemical instability is strictly involved in the exposure of potential

calcium-binding sites (residual aldehydes, acids, Schiff bases, etc).

As a result of the interaction between tissue amino acid residues and

GA, negatively charged carboxylic acid groups can be created which

can electrostatically interact with positively Ca2+ charged ions,

becoming a tremendous attraction site for calcium. To make

matters worse, even the free-to-react aldehyde groups can be

easily oxidized into carboxylic residues via air, in-vivo blood, and

macrophage oxidation. To decrease the influence on the

calcification process, several changes in the GA fixation protocols

have been proposed by the BHVs manufacturers, including the
FIGURE 1

Quantitative evaluation (450 nm OD absorbance units) of IgG and IgM anti-Gal antibody production in KO mice. On the left the basal level (BL), in
the center, and on the right the variations found after 2 months of implantation of commercial Trifecta-GT valve leaflets not-treated (NT) and
polyphenols-treated (F) (n=10 for each type of sample including BL). The data points represent the means ± SD. ** Indicates a statistically significant
difference between the two groups at the 0.95 confidence level.
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addition of novel steps aimed at the chemical stabilization of the

reactive aldehyde and carboxylic groups. GA detoxification by

urazole, diamine spacer extension, treatment by 2-amino oleic

acid, or incubation in ethanol is just some of the processes

developed in the challenge of stabilizing GLU, with the hope of

delaying the calcific tissue dystrophy (29). Although the calcified

degeneration of the BHVs is the long-term event generally

responsible for the definitive failure of such biomedical devices, it

must not be forgotten that there are a series of degenerative

processes that begin to affect the prosthesis just a few hours after

implantation. It is now well established as such degenerative active

mechanisms are triggered by early host’s immune-response toward

the implant (19). Recently, the results of the Translink international

collaborative study group have been released (10). Translink is a

prospective European Union-funded collaborative project, which

assessed the role of the xenoantigens in BHVs deterioration. In

particular, Translink is focused on the involvement of anti-glycan

antibodies in inducing calcification of BHV tissues, confirming that

BHV xenogeneic antigens contribution to the immunogenicity of

animal-derived implants, is eliciting antibodies that are likely

involved and support valve calcification. The results obtained

from this study provide evidence that the lack of the aGal
epitope in the GGTA1 KO mice was associated with an early

(one-month) response leading to quadrupling the calcium

deposition rate determined in WT animals at the same time

(Figure 2). This initial response is recalling the severe calcific

deposits associated with the early failure of porcine heart valve

transplanted in pediatric patients (30) and successively suggested to

be related to the presence of residual aGal epitopes (31).
Such residual presence of aGal xenoantigen increases the

human anti-galactose titers, starting from day 10 following BHV

implantation (32) while reaching a peak at around 3 months (33)

for IgM (+45.1 ± 10.5%) and IgG (+21.7 ± 4.65%) isotype. The
Frontiers in Immunology 06
increase in the production of anti-Gal antibodies does not decrease

even 5 years after implantation (34), confirming that a basic

immune-stimulation is always active, probably due to the

chemical instability of the GA which leads to the exposure of

previously masked antigens over time. This sugar moiety is

expressed in most mammalian tissues, except humans and higher

primates. In humans, the continuous antigenic stimulation by

gastrointestinal flora (expressing the aGal epitope) results in the

production of anti-aGal antibodies accounting for 1 to 3% of the

circulating immunoglobulins. Different research groups (10, 35)

have demonstrated that these preformed antibodies could cause

opsonization of the valve tissue with consequent initiation of

specific Fc-receptor-mediated macrophage recruitment with

antigen processing and presentation, resulting in extracellular

matrix (ECM) calcification and deterioration.

In agreement with what was reported in humans and available

in the literature (10, 32–34), (tissues in which masked xenoantigen

carbohydrates, do not trigger antibody-mediated calcification), the

anti-aGal antibodies in the GGTA1 KO blood analysis resulted in a

remarkable IgG and IgM increase only in mice that received a

bioprosthetic leaflet not treated with polyphenols (Figure 1).

Accordingly, the use of polyphenols results in a powerful

approach able to prevent calcium deposition as assessed in two

different mouse animal models. Of interest that polyphenols have

also been reported to inhibit calcium deposition in BHVs when

tested in an in vitro system (24).

Small animal models such as rats or mice are widely used for in

vivo biomaterial assessment for their low cost, ready availability,

ease of handling, and well-defined immune parameters. These

models are generally used for the assessment of chronic changes

to BHV leaflets implanted in an ectopic (non-cardiac) location. In

particular, the subdermal model provides permanent contact of the

implant to host tissue and sufficient blood supply (serum exposure),
FIGURE 2

Calcification trend in not-treated (NT) and polyphenols-treated (F, green bar) currently adopted leaflets of Trifecta-GT implanted in the subcutis
back area of wild-type mice (WT, light blue bar at 1, 2, and 4 months of follow-up) and knockout for aGal antigen (KO, grey bar at 1 and 2 months of

follow-up). As a control sample, calcium quantification was also carried out in un-implanted off-the-shelves original Trifecta GT™ valve leaflets
resulted to be 1.19 ± 0.05 µg/10mg of ddw.
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which eases cellular infiltration and allows a rapid screening efficacy

for anti-calcification treatments.

Particularly, the use of the GGTA1 KO animal model enables a

differential evaluation of the immune-mediated effects of the aGal
concerning that of the whole of other intrinsic and extrinsic factors

leading to the calcification of BHVs (as also revealed by the WT

mouse model). In fact, besides the early calcium deposition, the

increase of anti-aGal IgG and IgM, specifically due to the presence of

the aGal epitope in the implanted tissues, is opening the way to the

separate detection of residualaGal antigen in any kind of implantable

biomaterials. In addition, the results of this investigation are further
Frontiers in Immunology 07
confirming the presence of immunologically active aGal antigens in
BHVs currently adopted in clinical practice as previously determined,

by a different analytical approach (11).

Formation of the aGal epitope mostly occurs by the transfer of

galactose in a a(1,3)-glycosidic linkage to an N-acetyllactosamine

(LacNAc) acceptor molecule group present on protein and lipid

(Figure 4A). This reaction is encoded by the GGTA1 gene (36).

However, a residual amount of aGAL epitope reactivity has been

recognized in biallelic GGTA1-knockout pig cells and implicated as

a possible contributor to chronic rejection of GGTA1-/- organs as

found in non-primate models of xenotransplantation (20, 21).
FIGURE 3

Histological evaluation of calcium deposition in representative not-treated (NT) and polyphenols-treated (F) leaflets from Trifecta-GT valve
implanted in the subcutis back area of wild-type (WT, 4 months of follow-up) and aGal knockout (KO, 2 months of follow-up) mice. Spots of
calcified deposition are highlighted by yellow arrows. Von Kossa staining, magnification 10X.
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The existence of another Gal-transferase in GGTA1 KO mice

was already reported by Milland et al. (37) identifying

isoglobotrihexosylceramide synthase (iGb3s) in GGTA1 KO mice

and the presence of a small amount of iGb3s in tissues using

monoclonal antibodies. IGb3S is known to generate the Gala1,3Gal
disaccharides epitopes on glycosphingolipids (Lac) by the addition

of galactose to lactosylceramide (Figure 4A).

The comparison of the aGal epitopes number as quantified in the

different tissues of WT and GGTA1 KO mice confirmed what has

already been reported in the literature namely the presence of variable

antigenic residues despite the silencing of the GGTA1 enzyme

(Table 1). To our knowledge, this is the first report, to provide the

distribution of the residual percentage of aGal likely related to the

enzyme iGb3s compared to the uppermost activity of GGTA1.

The aGal epitope is related to the iGb3s enzyme exclusively

bound to lipid components, in particular, to ceramides. In the

mammalian nervous system, nerve conduction is facilitated by

myelin, a lipid-rich membrane that wraps around the axon. The

myelin sheath is a specialized structure with distinct lipid and protein

constituents. Galactosylceramide (GalCer) and sulfatide make up

approximately 30% of total myelin lipids (38). In particular, the

levels of GalCers are especially high in the brain and have been
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reported to be higher than glucosylceramides (GluCers) in the WT

mouse brain (39). Previous studies revealed that ceramides mediate

signal transduction and cell adhesion and are crucial for the formation

of nervous tissues (40), this could explain why even in the KOmouse a

significant amount of iGb3s-aGal epitopes are available, due to their

unavoidable presence for correct brain and neuronal function. The

outermost layer of the mammalian epidermis is the stratum corneum,

which is made of flattened, enucleated keratinocytes and a unique

extracellular lipid matrix produced by differentiating keratinocytes.

The stratum corneum provides the permeability barrier against water

and various environmental agents, such as chemicals and

microorganisms. About half of the lipids in the stratum corneum

are mixtures of ceramides (41). Significant levels of ceramides were

also found in the kidneys, liver, lungs, and myocardium (42).

However, the residual percentages of aGal quantified in this study,

agree with what was reported by Shao A and colleagues who describe a

reduction in the expression of the antigen between 5.19% and 21.74%

in GGTA1-KO mice (18), except for the skin and brain areas where,

due to a higher concentration of ceramides, the reduction is

much smaller.

Noteworthy, GGTA1 KO animals do not seem to express iGb3s

in sufficient amounts to mediate cell destruction: the work of
A

B

FIGURE 4

(A) Structure of the different aGal xenoantigenic trisaccharides. In particular, the portion of the structure corresponding to the Gala1-3Gal
(galactobiose), the N-Acetyl glucosamine (NAc) and the Lactose (Lac) has been clearly identified. The presence in the molecular structure of the NAc
or the Lactose group is responsible to determine the immunogenicity of the global trisaccharide. (B) The polyphenolic tri-dimensional network
sterically covers and shields the recognition of specific extracellular (ECM) reactive sites physiologically involved in triggering the degenerative
phenomena affecting the BHVs after the implant.
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Murray and colleagues reports as a minimum threshold of aGal
expression is required to induce antibody-mediated skin graft

rejection in a mouse GGTA1 KO model (43). Accordingly, a

previous study demonstrated that silencing the porcine iGb3S

gene did not affect measures of anticipated pig-to-human and

pig-to-primate acute rejection, suggesting iGb3S is not a

contributor to antibody-mediated rejection in pig-to-primate or

pig-to-human xenotransplantation (44). In fact, the aGal

contribution due to the presence of iGb3S is not appreciable by

heat-inactivated human and baboon sera antibodies when

incubated with GGTA1 KO or GGTA1/iGb3S double KO pig

tissue. This is the reason, even if residues of aGal antigen are still

present, the aGal KO mouse was revealed as an adequate animal

model for evaluating the calcification propensity of currently

adopted BHV tissues. The implantation of Trifecta-GT valve

leaflets has significantly stimulated the mouse immune system

and resulted in massive production of anti-Gal antibodies

(Figure 1) both IgM and IgG type. This mouse immune-mediated

reaction is apparently quite similar to that occurring in humans, as

extensively reported in the literature (32, 33). All that raises

important considerations in evaluating the efficacy of anti-calcific

treatments, making it clear that the choice of small animal models

must necessarily prefer the KO model in order not to incur a

possibly dramatic underestimation of the potential triggered by

immune-mediated reactions towards xenoantigens.

What is more, polyphenols are known for their strong anti-

inflammatory potential (45) and for being effective in masking

xenogenic antigens as previously reported (24). In particular, in this

study, the polyphenols-based treatment confirmed an unexpected

ability to inhibit the recognition of BHV xenoantigens by

circulating antibodies even in a GGTA1 KO mouse while almost

completely preventing calcific depositions compared to the

untreated counterpart. The effectiveness of such treatment is

furtherly supported by the already disclosed ability of polyphenols

to reach an unprecedented chemical stabilization of the GA,

remarkably enhancing the inactivation of the free-to-react

carboxylic and aldehyde groups to 76% and 55%, respectively

(19). Concluding the investigation on the chemical interaction

between polyphenols and ECM (19) has highlighted how

polyphenols can interact forming a three-dimensional network

(both internally and around the tissue) sterically covering and

shielding the recognition of specific extracellular matrix reactive

sites (xenoantigens (24), adhesive sites for pathogenic micro-

organisms (27), calcium nucleation sites and platelet surface

receptors (19)) physiologically involved in triggering the

degenerative phenomena affecting the BHVs after the implant

(Figure 4B). Noteworthy, this network is not an insulator but

allows the exchange of water, ions, and various pro-active

substances between the inside and outside of the matrix. The

protective effect of polyphenols can therefore be reasonably

considered as a synergistic action of various factors which, acting

on different levels, converge in the results in inhibiting the

degenerative mechanisms, including calcification.
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