41 research outputs found

    The role of nonlinear optical absorption in narrow-band difference frequency terahertz-wave generation

    Full text link
    We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical difference frequency generation, when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon-absorption terms, we have been able to plot universal charts for phase matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date, in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conversion efficiency at higher peak pump intensities.Comment: 16 pages, 2 figures. Some correction and some explanation adde

    Universal charts for optical difference frequency generation in the terahertz domain

    Full text link
    We present a universal and rigorous approach to study difference frequency generation in the terahertz domain, keeping the number of degrees of freedom to a minimum, through the definition of a suitable figure of merit. The proposed method relies on suitably normalized charts, that enable to predict the optical-to-terahertz conversion efficiency of any system based on wave propagation in quadratic nonlinear materials. The predictions of our approach are found to be in good agreement with the best experimental results reported to date, enabling also to estimate the d22 nonlinear coefficient of high quality GaSe.Comment: 3 pages in 2 columns format, 3 figures. GaSe analysis has been corrected. Fig. 3 has been replace

    parametric conversion in micrometer and submicrometer structured ferroelectric crystals by surface poling

    Get PDF
    We report on recent technological improvements concerning nonlinear patterning of lithium niobate and lithium tantalate in the micrometer and submicrometer scales using surface periodic poling for ferroelectric domain inversion. The fabricated samples were employed for frequency doubling via quasiphase-matching both in bulk and guided wave geometries, including forward and backward configurations and wavelength conversion in bands C and L. We also investigated short-period quasiperiodic samples with randomly distributed mark-to-space ratios

    Exploiting the optical quadratic nonlinearity of zincblende semiconductors for guided-wave terahertz generation: a material comparison

    Full text link
    We present a detailed analysis and comparison of dielectric waveguides made of CdTe, GaP, GaAs and InP for modal phase matched optical difference frequency generation (DFG) in the terahertz domain. From the form of the DFG equations, we derived the definition of a very general figure of merit (FOM). In turn, this FOM enabled us to compare different configurations, by taking into account linear and nonlinear susceptibility dispersion, terahertz absorption, and a rigorous evaluation of the waveguide modes properties. The most efficient waveguides found with this procedure are predicted to approach the quantum efficiency limit with input optical power in the order of kWs.Comment: 8 pages in two columns format, 6 figures, 2 Table

    Error mitigation using RaptorQ codes in an experimental indoor free space optical link under the influence of turbulence

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in [journal] and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital LibraryIn free space optical (FSO) communications, several factors can strongly affect the link quality. Among them, one of the most important impairments that can degrade the FSO link quality and its reliability even under the clear sky conditions consists of optical turbulence. In this work, the authors investigate the generation of both weak and moderate turbulence regimes in an indoor environment to assess the FSO link quality. In particular, they show that, due to the presence of the turbulence, the link experiences both erasure errors and packet losses during transmission, and also compare the experimental statistical distribution of samples with the predicted Gamma Gamma model. Furthermore, the authors demonstrate that the application of the RaptorQ codes noticeably improves the link quality decreasing the packet error rate (PER) by about an order of magnitude, also offering in certain cases an error-free transmission with a PER of ∼10−2 at Rytov variance value of 0.5. The results show that the recovery rate increases with the redundancy, the packet length and the number of source packets, and it decreases with increasing data rates.This work was supported by the European Space Agency under grant no. 5401001020. We are very grateful to Dr. E. Armandillo for enlightening discussions. This research project also falls within the frame of COST ICT Action IC1101 - Optical Wireless Communications - An Emerging Technology (OPTICWISE). J. Perez's work is supported by Spanish MINECO Juan de la Cierva JCI-2012-14805.Pernice, R.; Parisi, A.; Ando, A.; Mangione, S.; Garbo, G.; Busacca, AC.; Perez, J.... (2015). Error mitigation using RaptorQ codes in an experimental indoor free space optical link under the influence of turbulence. IET Communications. 9(14):1800-1806. https://doi.org/10.1049/iet-com.2015.0235S18001806914Tsukamoto, K., Hashimoto, A., Aburakawa, Y., & Matsumoto, M. (2009). The case for free space. IEEE Microwave Magazine, 10(5), 84-92. doi:10.1109/mmm.2009.933086Paraskevopoulos, A., VuÄŤić, J., Voss, S.-H., Swoboda, R., & Langer, K.-D. (2010). Optical Wireless Communication Systems in the Mb/s to Gb/s Range, Suitable for Industrial Applications. IEEE/ASME Transactions on Mechatronics, 15(4), 541-547. doi:10.1109/tmech.2010.2051814Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Perez, J., & Ijaz, M. (2012). Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 30(13), 2188-2194. doi:10.1109/jlt.2012.2194271Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, V., & Matsumoto, M. (2009). 1.28-Tb/s (32 Ă—\times 40 Gb/s) Free-Space Optical WDM Transmission System. IEEE Photonics Technology Letters, 21(16), 1121-1123. doi:10.1109/lpt.2009.2021149Parca, G. (2013). Optical wireless transmission at 1.6-Tbit/s (16Ă—100  Gbit/s) for next-generation convergent urban infrastructures. Optical Engineering, 52(11), 116102. doi:10.1117/1.oe.52.11.116102Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for Optical Beam Scattering and Wandering in FSO Communications. Journal of Lightwave Technology, 32(7), 1323-1328. doi:10.1109/jlt.2014.2304182Ghassemlooy, Z., Popoola, W. O., Ahmadi, V., & Leitgeb, E. (2009). MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels. Communications Infrastructure. Systems and Applications in Europe, 61-73. doi:10.1007/978-3-642-11284-3_7Garcia-Zambrana, A. (2007). Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence. IEEE Communications Letters, 11(5), 390-392. doi:10.1109/lcomm.2007.061980Abou-Rjeily, C. (2011). On the Optimality of the Selection Transmit Diversity for MIMO-FSO Links with Feedback. IEEE Communications Letters, 15(6), 641-643. doi:10.1109/lcomm.2011.041411.110312GarcĂ­a-Zambrana, A., Castillo-Vázquez, C., & Castillo-Vázquez, B. (2010). Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods. Optics Express, 18(24), 25422. doi:10.1364/oe.18.025422Andò, A., Mangione, S., Curcio, L., Stivala, S., Garbo, G., Pernice, R., & Busacca, A. C. (2013). Recovery Capabilities of Rateless Codes on Simulated Turbulent Terrestrial Free Space Optics Channel Model. International Journal of Antennas and Propagation, 2013, 1-8. doi:10.1155/2013/692915MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings - Communications, 152(6), 1062. doi:10.1049/ip-com:20050237Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551-2567. doi:10.1109/tit.2006.874390Anguita, J. A., Neifeld, M. A., Hildner, B., & Vasic, B. (2010). Rateless Coding on Experimental Temporally Correlated FSO Channels. Journal of Lightwave Technology, 28(7), 990-1002. doi:10.1109/jlt.2010.2040136Wang, N., & Cheng, J. (2010). Moment-based estimation for the shape parameters of the Gamma-Gamma atmospheric turbulence model. Optics Express, 18(12), 12824. doi:10.1364/oe.18.012824Zvanovec, S., Perez, J., Ghassemlooy, Z., Rajbhandari, S., & Libich, J. (2013). Route diversity analyses for free-space optical wireless links within turbulent scenarios. Optics Express, 21(6), 7641. doi:10.1364/oe.21.007641Pernice, R., Perez, J., Ghassemlooy, Z., Stivala, S., Cardinale, M., Curcio, L., … Parisi, A. (2015). Indoor free space optics link under the weak turbulence regime: measurements and model validation. IET Communications, 9(1), 62-70. doi:10.1049/iet-com.2014.043
    corecore