5 research outputs found

    Parallel packing code for propellant microstructure analysis

    Get PDF
    In recent years, packing codes have become a successful alternative to experimental data collection for microstructure investigation of heterogeneous materials. Composite solid rocket propellants are interesting representatives of this category, consisting of a mix of fuel and oxidizer powders embedded in a polymeric binder. Their macroscopic properties are strictly dependent on the peculiar microstructure, which influences mechanical, combustion, as well as physical features. This work addresses algorithm development, validation, and scalability of POLIPack, a parallel packing code based on the Lubachevsky–Stillinger algorithm, developed at the Space Propulsion Laboratory (SPLab) of Politecnico di Milano. The application can reproduce the organization of spheres of any diameter inside a cube with periodic boundary. In addition to the general code description, the paper identifies a collision condition not addressed by the original Lubachevsky's algorithm (here called back impact), introduces a novel post-impact handling granting a minimum separation velocity between particles, and presents a parallelization approach based on OpenMP shared memory paradigm. Monomodal and bimodal packs have been compared to experimental data through statistic descriptors and packing maps

    Exploiting the Value of Active and Multifunctional Façade Technology through the IoT and AI

    No full text
    In recent years, the interest in multifunctional façade (MF) technology has increased significantly. Recent advances in the integration of active and passive technologies have led to a new concept of building skins with highly flexible and decentralized control. Such an approach is considered capable of tackling environmental challenges and enhancing indoor environmental quality (IEQ). Integrated HVAC systems, dynamic blinds, and renewable energy systems can drastically increase façade responsiveness and efficiency. Although the technical feasibility of active and MF technology has already been demonstrated, market applications are still limited. The goal of this paper is to define the state of the art of MFs and clarify how the integration of IoT technologies, supported by AI, can increase market interest by fully exploiting the value of these systems. Indeed, recent advances in the IoT and data analysis tools are opening up attractive scenarios in optimization process. Starting with an overview of the most interesting EU-funded projects, this paper presents a MF case study in which IoT infrastructures are fully integrated. The prototype, realized within the MEZeroE Horizon project, stimulates a debate on future trajectories (and gaps) for the marketability of M

    Prefabricated Plug-and-Play Unitized Façade System for Deep Retrofitting: The RenoZEB Case Study

    No full text
    The retrofitting of the existing building stock is one of the most important goals to be pursued to meet European targets. In this context, the RenoZEB project has developed a modular methodology for the deep retrofitting of buildings, which is enabled by a prefabricated plug-and-play façade that integrates different on-market technologies to achieve nZEB standards. This article reports on the activities conducted in the study and design of the RenoZEB prefabricated envelope system, providing insights on the tests conducted and the results achieved for the façade system, with a specific focus on the use of technology laboratory facilities for real-environment validation, which revealed the system to be in line with the project objectives

    Prefabricated Plug-and-Play Unitized Façade System for Deep Retrofitting: The RenoZEB Case Study

    No full text
    The retrofitting of the existing building stock is one of the most important goals to be pursued to meet European targets. In this context, the RenoZEB project has developed a modular methodology for the deep retrofitting of buildings, which is enabled by a prefabricated plug-and-play façade that integrates different on-market technologies to achieve nZEB standards. This article reports on the activities conducted in the study and design of the RenoZEB prefabricated envelope system, providing insights on the tests conducted and the results achieved for the façade system, with a specific focus on the use of technology laboratory facilities for real-environment validation, which revealed the system to be in line with the project objectives
    corecore