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Parallel Packing Code for Propellant Microstructure

Analysis

Alessandro Baiettab,1, Filippo Maggib,1,∗

bPolitecnico di Milano, 34, via La Masa, 20156 Milan, Italy

Abstract

In recent years, packing codes have become a successful alternative to ex-
perimental data collection for microstructure investigation of heterogeneous
materials. Composite solid rocket propellants are interesting representatives
of this category, consisting of a mix of fuel and oxidizer powders embedded
in a polymeric binder. Their macroscopic properties are strictly dependent
on the peculiar microstructure, which influences mechanical, combustion, as
well as physical features. This work addresses algorithm development, val-
idation, and scalability of POLIPack, a parallel packing code based on the
Lubachevsky-Stillinger algorithm, developed at the Space Propulsion Labo-
ratory (SPLab) of Politecnico di Milano. The application can reproduce the
organization of spheres of any diameter inside a cube with periodic boundary.
In addition to the general code description, the paper identifies a collision
condition not addressed by the original Lubachevsky’s algorithm (here called
back impact), introduces a novel post-impact handling granting a minimum
separation velocity between particles, and presents a parallelization approach
based on OpenMP shared memory paradigm. Monomodal and bimodal packs
have been compared to experimental data through statistic descriptors and
packing maps.

Keywords: packing code, parallelization, propellant, microstructure,
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Nomenclature

Acronyms

ANU Australian National University

BDP Beckstead-Derr-Price model

GDF Granular Diffusion Flame

RDF Radial Distribution Function

XCT X-ray Computed Tomography

Greek symbols

Δ Threshold parameter (near-
contact number analysis)

ε Fraction change parameter

Roman symbols

a Growth rate parameter

D Particle diameter

dr Shell thickness (RDF analysis)

e Restitution coefficient

F Force

f Volumetric packing fraction

G Relative velocity between centers

m Mass

N Number of particles in the pack

N Total number of particles

n Unit vector aligned with the line
joining two particle centers

n Number of computational steps

n(r, dr) Average number of particles
in a shell (RDF analysis)

p Portion of the code that benefits
from parallelization (Amdahl’s law)

q Number of machines running in
parallel (Amdahl’s law)

r Radius (RDF analysis)

S Speedup (Amdahl’s law)

t Time

V Volume of the pack

ẋ Velocity vector

x Position vector

Subscripts and superscripts

0 Condition before collision

C Condition at collision

i Ref. to i-th particle

1. Introduction

Composite solid propellants are heterogeneous materials. They are me-
chanical mixtures of micron-sized powders blended and kept together by a
polymer matrix. If a space-averaged analysis is performed on a volume large
enough, chemical and physical properties (e.g. composition, density) are uni-
form. The buildup of properties at the macroscale depends on the microscale
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and on how the single items arrange each other in the space. Only a close-
up observation reveals local nonuniform features introduced by single ingre-
dients. From a propulsion viewpoint, the nominal propellant composition
influences the theoretical specific impulse. Nonetheless, global experimental
properties such as burning rate, metal agglomeration, or elastic modulus are
in part controlled by ingredient morphology. [1].

The heterogeneity of the microstructure was gradually introduced in com-
bustion models, replacing the homogeneous formalism. Initially, one dimen-
sional approaches included a peculiar equation set accounting for the local
variability (Summerfield’s GDF [2], Hermance [3], Beckstead’s BDP [4]). Fi-
nally, two- or three-dimensional approaches were developed for laminate or
heterogeneous propellant combustion [5–7]. An interesting review on modern
methodologies was recently published by Jackson [8]. Multidimensional com-
bustion models for propellants enabled the simulation of micro-to-macroscale
combustion physics. End-to-end modeling effort covered different aspects,
such as the analysis of the mechanical properties or the propagation of frac-
tures. Also the agglomeration attitude of metalized composite propellants
was related to the heterogeneous microstructure. The problem was early
addressed by Cohen who developed the pocket concept, which was a geomet-
rically defined region where agglomeration was favored by local conditions.
More recently, the concept was generalized to random microstructures via
statistical methodologies. [9–12].

Heterogeneous models need reliable information about propellant mi-
crostructure. Density and spatial displacement of sphere beads, ellipsoids,
powders, or needles, were largely investigated in the past by means of ex-
perimental methods with techniques spanning from simple optical analysis
to X-ray computed tomography (XCT) [13–19]. Packing codes represent the
numerical alternative for the representation of heterogeneous systems. These
codes can be implemented using different kinds of algorithms and have the
scope to pack items together, into a defined control volume. The shape of the
packed objects vary from spheres to arbitrary shapes, depending on the needs
[20, 21]. Bandera used a one-by-one placement method, checking for overlaps
[22]. Yugong [23] and Maggi [24] applied a collocation strategy based on the
minimization of a target function. Webb and Davies used a drop-down tech-
nique, with particles randomly released from the top of a virtual container
[25]. A time-driven algorithm with inflatable particles and artificial viscosity
was applied by Rashkovskii [26]. On the other hand, an event-driven pack-
ing algorithm was introduced by Lubachevsky and then used in several codes
(e.g. Rocpack [20]). The comparison with experimental tomographic data
through spatial statistics for some of the aforementioned techniques have
demonstrated that different algorithms do not always generate equivalent
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microstrucures [27].
This paper describes the features of POLIPack, a parallel implementation

of Lubachevsky’s algorithm developed at the Space Propulsion Lab (SPLab)
of Politecnico di Milano [28–30]. The code, specifically designed for the sim-
ulation of propellant microstructure, considers a number of spheres moving
in a three-dimensional cubic domain. The items bounce with each other and
inflate from a zero-diameter initial condition, till jamming. Periodic bound-
aries are assumed. The advancement of the algorithm is event-driven and
intrinsically concurrent. Tuning, validation, scalability tests, and application
to real propellants are presented. Comparison with experimental microstruc-
tures was possible thanks to XCT data, kindly provided by Dr. Tomaso Aste
from the Australian National University [18, 19].

The paper is organized as follows. Section 2 describes the packing algo-
rithm and the implementation, with emphasis on the collision management.
Section 3 reports validation, testing, and sensitivity analyses on growth rate.
Section 4 focuses on the parallel implementation of this code and on relevant
scalability tests.

2. The packing algorithm

The packing code generates random sphere arrangements in a normalized
cubic domain. The side is 2 units long. Opposite faces of the cube are
virtually connected, assuring periodic conditions. Despite several strategies
have been considered by other authors (solid walls, other domain shapes), the
present implementation fulfills the necessity to simulate a bulk of propellant.
Otherwise, a solid boundary would have cast its influence on some particle
layers from the border.

The particles are represented by spheres which inflate, collide, and move
in the domain. The spherical shape grants easier motion handling and col-
lision detection. Despite the use of random shapes would be more adapt
to the scope, a sphere can represent adequately also rounded particles with
low aspect ratio, typical of most composite propellants. At the beginning of
the simulation, each particle is attributed an initial zero-diameter, random
position and velocity, and a diameter growth rate proportional to its nominal
size. User-defined distributions can be specified arbitrarily. The domain is
split in cells for better memory organization and parallelization.

2.1. Event-driven approach

Proper discretization is needed for simulation advancement. The code
has to identify and react to events generated by the collision between par-
ticles or by interactions with the domain (cell change or border crossing).
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In this respect, a time-driven approach, ruled by a time-paced status, can
be imprecise and highly expensive from the computational viewpoint [31].
Alternatively, with an event-driven approach the simulation advancement is
clocked by a sequence of events. If their identification is efficient and accu-
rate, the corresponding instant of time is derived afterwards.

Identification of collisions or border crossing in the case of particles mov-
ing without external forces is simple. The trajectory of the items is a straight
line between two collisions. The exact time for the next event is the solution
of a linear system (Eq. 1). The reference frame is reported in Fig. 1.

mixi = F (t,xi, ẋi) . xi = xi0, ẋi = ẋi0, i = 1, . . . , N (1)

[Figure 1 about here.]

A collision between sphere 1 and 2 happens when the distance of their cen-
ters is the sum of their radii. This condition corresponds to the solution of
Equation 2, where the collision time tC is the result.

‖x1 (tC)− x2 (tC)‖ =
D1 (tC)

2
+

D2 (tC)

2
(2)

In a classical elastic collision between particles of the same diameter,
the velocities of the spheres can be divided into components parallel and
perpendicular to the line connecting the centers. The transverse components
are unchanged by collision, whereas the parallel ones are exchanged. The
relationship between velocity across an impact is ruled by Eq. 3 [32].

ẋ1 = ẋ
(0)
1 − (

n ·G(0)
)
(1 + e)

m2

m1 +m2

n (3a)

ẋ2 = ẋ
(0)
2 +

(
n ·G(0)

)
(1 + e)

m1

m1 +m2

n (3b)

The computation depends on the pre-impact relative velocity G(0) = ẋ
(0)
1 −

ẋ
(0)
2 , particle masses mi, and the restitution coefficient e, which is assumed

constant. For e = 1, the conservation of kinetic energy through the collision
is ensured.

In the case of inflating spheres, the classical theory does not suffice to
grant the absence of overlaps. Particle surface features an outward move-
ment with respect to the center, due to the progressive inflation. At colli-
sion, additional rebound velocity may be necessary to prevent overlapping.
This further contribution depends on diameter growth rate and pre-impact
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velocity vectors. A simple solution explored by Lubachevsky consisted in
adding blindly a constant impulse at every impact but this seemingly naive
approach introduces additional rebound velocity even when not needed, thus
unnecessarily adding kinetic energy. In this work, the additional rebound
velocity matched the one required to ensure the absence of overlaps. The
reader should note that even particles with diverging trajectories can collide,
if the separating speed is less than the semi-sum of the diameter growth rate.
This event may be also a post-collision consequence if the pre-impact relative
velocity is low. This specific behavior was not addressed by Lubachevsky and
we dubbed it back impact. The present code handles this kind of event by
forking the execution in two branches, each of them treating the aforemen-
tioned cases, and resets rebound velocities to the minimum value ensuring
the absence of overlaps.

For more efficient memory use, a queue of N elements is populated by
the values of the minimum time lapses to the next event, computed for each
particle. A further minimum search identifies the successive event in the
whole pack. The code implements a domain decomposition, enabling the
collision prediction only among spheres belonging to neighboring cells, oth-
erwise the interaction time is set to infinity. Specific management of particle
transfer among the cells or volume border crossing ensures the evolution of
the partitioned space.

After an event, the update of the data structure can be synchronous
or asynchronous. In the former case, the status of the whole domain is
synchronized to the current time once an event is handled. In the latter case,
only the parameters of the spheres involved in a collision are updated and
a time stamp is associated to the record. This approach is possible because
the knowledge of particle location at a known time suffices for the solution
of the formulas for linear motion and collision detection. Specific queue data
handling is required but consistent saving of computational time is obtained.

2.2. Packing fraction and stopping criteria

The packing fraction f is the part of volume occupied by the spheres. Its
experimental value for single-size particle arrangements settle in a limited
range. For a random mix of spheres f can span in the range between 0.59
to 0.64, depending on mixing and densification method [17–19]. The reader
should remember that the maximum volumetric fraction for a single-size
pack is dictated by the close-pack configuration that grants theoretically
f = 0.7405. This limit cannot be reached just with a random mixing process.
Multimodal distributions allow more efficient space utilization since finer
particles can arrange within the gaps left by coarse cuts. The packing fraction
is correlated to the density of the simulated propellant. In this code each
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particle belongs to a family (e.g. oxidizer or metal fuel) which is associated
to a specific density. It is assumed that the voids between the particles are
filled by the binder matrix of known features, unless differently stated.

The Lubachevsky packing algorithm does not come to completion and a
stopping criterion is strongly needed. The packing fraction can be used to
monitor the progress of the code action. Its value varies run-time, due to
sphere inflation, and is dependent also on simulation parameters. For ex-
ample, higher growth rates reduce the packing capability while slower ones
enable higher packing fractions. In this respect, close-pack condition repre-
sents an asymptotic state that can be reached only after an infinite simulation
time [27]. The simplest possible stopping criterion consists of comparing f
against a target packing fraction. This solution is convenient when the re-
production of a known propellant is requested. Alternatively, the definition
of a fraction change parameter ε, based on the pack history evolution, is a
common practice (Eq. 4).

ε =
f(i+1)n − fi n

f(i+1)n

(4)

In the formula, i represents the count for ε evaluations since the begin-
ning of the run while n is the number of computational steps between two
successive checks. Short-period packing fraction oscillations may deceive the
stopping decision so in the present code the value of n is assumed ten times
the number of particles contained in the pack.

Computation of the next collision time is the code bottleneck [27, 29, 31].
The cell method reduces the number of computations for collision detection,
at the expense of managing particle transfers among domain partitions. Sig-
urgeirsson [31] demonstrated that optimum performance is obtained when
cell size and sphere diameter are about the same. Tailoring is easy for a
single-size pack. In case of multimodal distributions, domain partitioning is
dictated by the biggest particle size. If more items are stored in one cell,
loss on performance is observed. The issue becomes more critical when the
relative difference between the particle scales increases.

In POLIPack, at least 26 collision predictions must be handled at every
iteration, due to the cell splitting of the cubic domain. These computations
are independent from each other and are parallelized via shared memory
OpenMP paradigm [33]. This programming standard is handled by most of
the available commercial or open source compilers and takes advantage of the
multi-core architecture available in the latest CPUs. In this kind of problem,
a shared memory model simplifies the algorithm because the whole data set
is in the scope of each forked process. Drawbacks of this approach consist of
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the possibility of operation collision on records by competing processes and
the limited number of cores in one CPU.

3. Code validation and results

The validation of this code has been accomplished by using a spatial sta-
tistical approach based on experimental data available from the literature.
Volume-averaged properties (such as the volume fraction) are statistical func-
tions of the first order. They build upon the properties of the microstructure
but are not sufficient to identify the correct representation of the matter by
a model. Particle-particle reciprocal position can be addressed through de-
scriptors of higher order. In this respect, nearest neighborhood and radial
distribution function are also monitored. A detailed comparison has been
accomplished against XCT scans of particle packs 2 by Aste and co-authors
[18, 19] and on older data obtained via optical packing analysis by Bernard
[14], Mason [15] and Gotoh [34].

3.1. Monomodal packs

The statistics of four simulated packs have been compared with two ex-
perimental XCT data sets. The effect of particle growth rate and stopping
criteria was analyzed. In the packs A-1 and A-4, the final packing fraction
was commanded by the fulfillment of the ε condition for two different growth
rates. Fixed final fraction, matching the property of available experimental
data, was imposed in B1 and B2 packs. B1 used a constant growth rate
while a Gaussian perturbation of reported standard deviation was added in
pack B2. The reader can refer to Table 1 for details. At this stage of the
work the size of the particles in the monomodal packs is meaningless since all
characterizations are normalized with respect to the final packing diameter.

[Table 1 about here.]

The nearest neighborhood properties are first considered. In a monomodal
pack, each sphere cannot be in contact with more than 12 other peers [35].
The average number of contacts is called coordination number (a.k.a. kissing
number or contact number). In this type of dynamic simulation, the defini-
tion of contacts among spheres can be misleading because only one particle
couple is actually touching at every collision detection. Near-contact number
is used as an approximation. This is the average number of particles that
surround a sphere, which centers are separated by less than 1+Δ diameters.

2XCT data are property of ANU and are used under permission.
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Comparison between POLIPack generated packs and experimental data is
proposed in fig. 2.

[Table 2 about here.]

[Figure 2 about here.]

A reasonable comparison can be performed only among packs having similar
packing fractions since the neighborhood of a particle is more populated for
denser packs. Good agreement is observed for POLIPack A-1, A-4 and Gotoh
data, which feature a packing fraction between 0.631 and 0.641. If we focus
on denser packs, Aste-F and POLIPack B-2 are very similar to each other.
For looser packs B-1 and Aste-D it appears that the immediate neighborhood
of the experimental particle assembly is denser with respect to the simulated
one, while the opposite trend is observed at a longer range. In this respect,
the nature of the packing algorithm and the problem of contact definition
may be emphasized for loose packs. It is worth noting that experimental
data often do not agree with each other. For example, Bernal’s data seem to
overestimate the values assessed by Gotoh and Aste while Mason’s data are
more representative but the information about packing fraction is missing.

The Radial Distribution Function (RDF) is a statistical descriptor of the
second order. It characterizes the reciprocal position of spheres, identifying
repetitive structures in assemblies, or clusters in multimodal blends [12]. It
does not supply a directional information.

g(r, dr) =
V

N

n(r, dr)

4πr2
(5)

The function (Eq. 5) compares the average particle intensity of the pack
N/V with the same information computed at a given distance r from each
particle and globally averaged. The parameter dr is the thickness of the shell
used for the construction of function n(r, dr). RDFs of available data are con-
trasted in fig. 4, normalizing the horizontal axis with respect to the particle
diameter. The comparison reported in fig. 4(a) shows a good agreement be-
tween experimental data (Aste F) and simulation A-4 from POLIpack, both
featuring a packing fraction of 0.64. Some peculiar structures can be iden-
tified in the particle arrangement. The peak at the distance of 2 diameters
represents the presence of three aligned spheres; another peak at

√
3 is gener-

ated by three spheres in contact, whose centers form an equilateral triangle.
Neither experimental nor simulated data display a tetrahedral configuration,
whose fingerprint is a peak at 2

3

√
6. Some possible configurations are illus-

trated in fig. 3. The RDF of POLIPack A-4 is characterized by higher peaks
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with respect to Aste F, probably due to the uncertainty of sphere center
identification from the tomographic experiment, which is not known. In this
respect, POLIpack B-2 introduced some level of uncertainty by sampling the
diameter growth rates from a Gaussian distribution. More similar results
with smoothed peaks are obtained (fig. 4(b)).

[Figure 3 about here.]

[Figure 4 about here.]

Also for packs Aste-D, POLIPack-B1, and POLIPack-A4 the RDF analysis
shows good agreement even though peaks from experimental data are not as
evident as in simulated packs. In these cases, particles are looser with respect
to the previous examples: Rattlers (particles with some room of movement)
may be present and their location can generate peak smoothing (fig. 4(c) and
fig. 4(d)).

3.2. Growth rate and rebound velocity

Previous works have demonstrated that the result of Lubachevsky’s algo-
rithm is influenced by the choice of the particle growth rate. For example,
the final packing fraction in Rocpack code could be tuned by the choice of
this parameter [20]. This feature is positive when the target packing fraction
is known because it enables a wider simulation range. On the other side, the
choice of the proper growth rate for an unknown pack might be problematic
and can lead to result variability. In the present work we have discussed
about the treatment of after-collision velocity. With respect to the original
Lubachevsky’s algorithm, it is possible to limit the growth of the kinetic en-
ergy by limiting the increment of rebound velocity. This feature was tested
for POLIPack, using an assembly of 3000 single-size spheres. The diameter
growth rate a was varied from 0.01 to 100 on a logarithmic increment. The
stopping criterion was ε = 10−7, across a number of iterations, arbitrarily
set to 30000. With respect to the standard code (version A), three differ-
ent variants of minimum separation velocity between sphere centers after a
collision (ẋmin) and restitution coefficient (e) have been tested, as reported
in tab. 3. The results are presented in fig. 5, along with the outcomes of
Rocpack reference code. Each point in the plot is the average of three runs
with different initializations.

[Table 3 about here.]

[Figure 5 about here.]
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The resulting packing fractions are well centered in the range obtained ex-
perimentally by McGeary [17]. Specifically, Code B tends to f = 0.625,
which was found for an experimental assembly of steel spheres. The sensi-
tivity against the growth rate a is reduced with respect to the reference code
and plays a significant role only for higher packing fractions. The variation
of the post-collision strategy operates a generic translation of the whole set
of results. Code C and D do not demonstrate significant differences with
each other and set a packing fraction of about 0.61, in the testing range and
for the assumed stopping criterion. Code version A is capable of generating
the tightest packs for different conditions while intermediate results are ob-
tained from version B of the algorithm. The difference between code A and
B demonstrates the influence of post-collision velocity setup. The higher is
ẋmin, the higher is the final packing fraction. The influence vanishes for lower
growth rates. The same trend is observed for the increment of the restitu-
tion coefficient e, between code C and B. No influence is visible, below the
threshold of e = 0.5. Resulting microstructures were verified to be compliant
with the experiments.

3.3. Binary packs

The packing of a powder blend depends on the sphere distribution and on
the method to generate the particle assembly ([36–38]). From the experimen-
tal standpoint, McGeary reported interesting results and processing details
for binary packings, documenting data for different coarse-to-fine diameter
and quantity ratios [17]. Densification was achieved mainly by shaking and
was stopped following a minimum volume criterion. From a numerical view-
point, the stopping criterion of the Lubachevsky’s algorithm is still an open
issue, if the final packing fraction is not known. The progression of particle
inflation is monitored through the parameter ε but its arbitrary choice can
cause data fluctuation. Figure 6 reports the case of a bimodal pack contain-
ing 80% of coarse and 20% of fine cuts, having diameter ratio 6.5 : 1. The
volumetric packing fraction increases beyond the experimental value while ε
tends to a quasi-asymptotic trend. The dashed line represents the experi-
mental value for the specific condition and is matched for ε ≈ 5× 10−4.

[Figure 6 about here.]

Two series of packs made by 20000 spheres were generated varying the coarse-
to-fine volume fraction and keeping constant the coarse-to-fine diameter ratio.
Growth rate of 0.2 and ε = 5 × 10−4 were chosen. Figures 7(a) and 7(b)
report POLIPack results, McGeary’s experimental data, and Rocpack curves
(reference code). It is worth remembering that growth rates may not be
directly comparable between the two codes. Also the plots report two lines
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representing the ideal packing limits, given by the superimposition of two
monomodal random packs.

[Figure 7 about here.]

The selected stopping criterion works quite well for the pack with diameter
ratio 6.5:1. Both POLIPack and the reference code underestimate the max-
imum packing fraction of about 2%, suggesting that it is not a code-related
issue. Experimental and numerical data agree in the rest of the map. The
modeled packs with 3.4:1 diameter ratio do not show the same agreement
with experimental data. Both POLIPack and Rocpack with a = 0.2 overes-
timate McGeary’s maps for a fine fraction lower than 40%. Above this limit,
full agreement is obtained. This behavior is not yet understood and should
be matter of further investigation. The change of prediction capability after
growth rate variation in Rocpack suggests that collision handling can play
a significant role but introduces the difficulty in the selection of the correct
value for a. For POLIPack, a preference is given to the identification of a
proper stopping criterion ε, rather than a variation in growth rate, since the
proposed implementation features a reduced sensitivity of the code on a. In
any case, the reliable representation of a wide family of packs seems to be
possible if the final packing fraction is already known. Rather, the prelimi-
nary choice of an ε does not ensure that the code stops at the desired fraction
for a wide set of fine-to-coarse particle combinations, as it was observed in
Figures 7(a) and 7(b). This fact opens to the identification of a different con-
verging criterion which does not ground only on the evolution of the packing
fraction.

4. Scalability test

An important innovation introduced by the present code consists in the
approach to parallelization of the Lubachevsky’s algorithm. The OpenMP
shared memory paradigm simplifies code structure and eliminates inter-process
data transfer because variable space can be shared among the running in-
stances. As drawbacks, the number of parallel processes is upper limited by
the independent threads available for a machine and by the total amount of
memory. The latter problem is not an issue since million-sized packs can be
stored in some tens of megabytes. The former problem is more stringent and
is correlated to the number of cores of the processor(s) installed in the same
mainboard. Some technologies (such as Intel Hyper-Threading�) may en-
able running speedup even with multiple independent threads per each core
but the scalability is not full. Reported tests have been performed on a dual
core Hyper-Threading enabled Intel Core i5-480M machine with 4 GB DDR3
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memory and Windows 7 operating system. With this specific configuration,
significant results can be obtained for runs using up to 4 processes.

The parallelization acts on the domain decomposition, mentioned at the
beginning of Section 2. Collision detection between the content of a cell and
of its surrounding peers can be constructed as an independent process and
forked into parallel runs. The code can control the number of cells generated
in the domain and, indirectly, the number of particles per cell by chang-
ing the total particle number. For the following code runs, the domain was
split into 64 cells. Scalability tests were performed for two and four threads,
varying the number of particles, and reporting the ratio between serial and
parallel wall-clock time needed to reach a given number of collision predic-
tions (Figure 8). In case of monomodal packs, benefits from parallelization
are evident for more than 500 particles per cell. Scalability works quite well:
two processes almost half the execution time while reduction of 3.5 times is
observed for four threads (using Hyper-threading). This latter speedup may
not be due to parallelization reasons only, considering literature data on the
subject [39]. Memory and caching improvements may have occurred but it
is hard to say.

[Figure 8 about here.]

[Figure 9 about here.]

Parallelization is not always convenient. In fig. 9 a magnification of the
zone between 10 and 100 spheres per cell is presented. The single-threaded
version results to be faster when there are less then about 40 particles in a
cell. In this case OpenMP overhead, needed to fork the process, is more time
consuming than the code executed in each fork, killing performance gains.
From an ideal viewpoint, the speedup should be 2 or 4 for two-thread and
four-thread runs, respectively. Amdahl about fifty years ago defined a law for
the computation of the speedup capability for a code running in parallel on
q equivalent machines. Assuming that only the portion p of the code could
benefit from the parallelization, he noted that the speedup s was governed
by Eq. 6 [40].

s =
1

(1− p) + p
q

(6)

The complexity of current multicore machines makes more difficult the defi-
nition of a rigorous scalability law since the architecture of the central pro-
cessing unit should be contemplated in the analysis [41]. Moreover, it is hard
to identify the portion of the code subjected to effective parallelization for
a complex C++ code, unless a case-by-case profiling is performed. For the
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purpose of this research, an empirical evaluation of parallelization efficacy
with respect to the ideal case was obtained by deriving from the Amdahl’s
equation the coefficient p (Eq. 7).

p =
1
s
− 1

1
q
− 1

(7)

The parameter ranges between 0 and 1, tending to unity only if the code
can fully exploit the parallelization. In this latter case, for p = 1 the ideal
speedup coincides with the number of parallel branches (s = q) while p < 1
highlight the presence of overheads. Figure 10 reports the performance of the
parallel algorithm for different computational cases. The trend shows that
the higher is the number of particles in each computational cell, the better
is the efficacy of the parallelization. Results show an asymptotic behavior,
overcoming p = 0.9 for cell content above 1000 particles. It is interesting to
note that the efficacy of a two-thread process is lower than a four-thread case.
The difference tends to disappear for increased number of particles and may
be caused by the peculiar architecture of the machine used for the simulation.
The plot does not report data for a number of particles lower than 50 since
p < 0 is obtained, meaning that parallelization is not convenient.

[Figure 10 about here.]

5. Conclusions

The implementation of POLIPack, a packing code based on the Lubachevsky-
Stillinger algorithm was presented in this paper, describing governing frame-
work, implementation, parallelization, and validation tests. The applica-
tion demonstrated the capability to generate three-dimensional assemblies
of polydisperse spheres in a periodic domain, having comparable properties
with respect to experimental data. In addition to the standard Lubachevski
algorithm, this code included the handling for a new collision, not consid-
ered by the original methodology, and derived a new post-collision handling
concept, based on a criterion of minimum separation velocity between par-
ticles. Parametric tests have demonstrated that the present code features
lower sensitivity on the particle growth rate with respect to other compa-
rable implementations. The code was parallelized using a shared memory
paradigm which ensured a simpler code and demonstrated good scalability
properties on architecture typically used for laptop and desktop computers.
A parametric analysis on packing fraction data and comparison with ex-
periments suggested that a common methodology for the identification of a
stopping criterion is still lacking and, up to now, proper tuning is required

15



on controlling parameters, namely, particle growth rate and packing fraction
variation. In this respect, packing fraction evolution, growth rate of kinetic
energy, or even progress of microstructure properties should be mapped in
monomodal and multimodal packing procedures. The current implemen-
tation of the code features limited flexibility on domain type and particle
shape. Whereas the extension to other domains (cuboids or cylinders) or
addition of external forces (e.g. virtual shaking or gravity) result in a quite
straightforward implementation within the bounds of the current framework,
the collision strategy is not suitable for non-spherical particles and must be
reconsidered.
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Figure 1: Reference system for particle collision
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Figure 3: Possible sphere arrangements and the resulting distances. On the left, four
spheres lie on a plane, the centers form an equilateral triangle; on the right side, the
darker spheres form a regular tetrahedron with each of the lighter ones.
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Figure 4: Radial Distribution Function; comparison between experimental data from
Aste [18, 19] and simulated packs (see Table 1 for further details).
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Figure 6: Evolution of volumetric packing fraction versus ε parameter for a bimodal pack-
ing having a coarse-to-fine ratio of 80/20 and a diameter ratio of 6.5:1. Direction of the
horizontal axis is inverted. Packing progression runs from left to right.
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(a) Diameter ratio: 3.4:1 (b) Diameter ratio: 6.5:1

Figure 7: Bimodal packing maps. Data from experiments and Rocpack reference code are
included [17, 27].
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Figure 8: Scalability tests of POLIPack. Execution time of the parallel version is expressed
as fraction of the sequential one.
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Figure 9: Same as fig. 8; transition zone magnified. For more than 30 spheres per cell the
OpenMP version of the program results to be faster than the sequential one.
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Figure 10: Performance of parallelization for different computational cell content
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Label a f Source Note

POLIpack A-1 0.01 0.641 Simulated Stop ε < 10−7

POLIpack A-4 10 0.631 Simulated Stop ε < 10−7

POLIpack B-1 0.01 0.626 Simulated Stop f <= 0.626
POLIpack B-2 0.01± 10−4 0.640 Simulated Stop f <= 0.640

Table 1: Packs used for the statistical validation of the microstructure
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Near-contact number
Source f N 1.02D 1.05D 1.10

Bernal-LRP 0.60 420 N.A. 7.1 N.A.
Bernal-DRP 0.62 476 N.A. 8.5 N.A.
Mason N.A. 536 6.8 8.0 8.9
Gotoh 0.636 7934 7.05 8.0 9.0

POLIpack A-1 0.641 10000 7.17 8.05 9.09
POLIpack A-4 0.631 10000 7.07 7.86 8.79
POLIpack B-1 0.626 10000 6.11 7.78 9.00
POLIpack B-2 0.640 10000 7.13 8.05 9.08

Aste D 0.626 35000 6.43 7.65 8.53
Aste F 0.640 35000 7.13 7.99 8.89

Table 2: Near-contact number; comparison between POLIPack results (using e = 1) and
experimental data [14, 15, 18, 19, 34]. Values for distances of 1.02D, 1.05D and 1.10D
are reported.
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Code ẋmin e

A (baseline) 2.00 · (a0) 1.0
B 1.02 · (a0) 1.0
C 1.02 · (a0) 0.5
D 1.02 · (a0) 0.0

Table 3: Different combination of ẋmin and e used in the collision function.
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