36 research outputs found

    Subjects who developed SARS-CoV-2 specific IgM after vaccination show a longer humoral immunity and a lower frequency of infection

    Get PDF
    Background: We have previously shown that eliciting SARS-CoV-2-specific IgM after vaccination is associated with higher levels of SARS-CoV-2 neutralizing IgG. This study aims to assess whether IgM development is also associated with longer-lasting immunity. Methods: We analysed anti-SARS-CoV-2 spike protein IgG and IgM (IgG-S, IgM-S), and anti-nucleocapsid IgG (IgG-N) in 1872 vaccinees at different time points: before the first dose (D1; w0), before the second dose (D2; w3) at three (w6) and 23 weeks (w29) after D2; moreover, 109 subjects were further tested at the booster dose (D3, w44), at 3 weeks (w47) and 6 months (w70) after D3. Two-level linear regression models were used to evaluate the differences in IgG-S levels. Findings: In subjects who had no evidence of a previous infection at D1 (non-infected, NI), IgM-S development after D1 and D2 was associated with higher IgG-S levels at short (w6, p < 0.0001) and long (w29, p < 0.001) follow-up. Similar IgG-S levels were observed after D3. The majority (28/33, 85%) of the NI subjects who had developed IgM-S in response to vaccination did not experience infection. Interpretation: The development of anti-SARS-CoV-2 IgM-S following D1 and D2 is associated with higher IgG-S levels. Most individuals who developed IgM-S never became infected, suggesting that IgM elicitation may be associated with a lower risk of infection. Funding: "Fondi Ricerca Corrente" and "Progetto Ricerca Finalizzata" COVID-2020 (Italian Ministry of Health); FUR 2020 Department of Excellence 2018-2022 (MIUR, Italy); the Brain Research Foundation Verona

    Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs

    Get PDF
    While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues

    A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

    Get PDF
    Background: Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. Objectives: To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD. Methods: From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. Results: Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23. Conclusions: Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations. Clinical trial registration: NCT02737982

    The Sex-Specific Detrimental Effect of Diabetes and Gender-Related Factors on Pre-admission Medication Adherence Among Patients Hospitalized for Ischemic Heart Disease: Insights From EVA Study

    Get PDF
    Background: Sex and gender-related factors have been under-investigated as relevant determinants of health outcomes across non-communicable chronic diseases. Poor medication adherence results in adverse clinical outcomes and sex differences have been reported among patients at high cardiovascular risk, such as diabetics. The effect of diabetes and gender-related factors on medication adherence among women and men at high risk for ischemic heart disease (IHD) has not yet been fully investigated.Aim: To explore the role of sex, gender-related factors, and diabetes in pre-admission medication adherence among patients hospitalized for IHD.Materials and Methods: Data were obtained from the Endocrine Vascular disease Approach (EVA) (ClinicalTrials.gov Identifier: NCT02737982), a prospective cohort of patients admitted for IHD. We selected patients with baseline information regarding the presence of diabetes, cardiovascular risk factors, and gender-related variables (i.e., gender identity, gender role, gender relations, institutionalized gender). Our primary outcome was the proportion of pre-admission medication adherence defined through a self-reported questionnaire. We performed a sex-stratified analysis of clinical and gender-related factors associated with pre-admission medication adherence.Results: Two-hundred eighty patients admitted for IHD (35% women, mean age 70), were included. Around one-fourth of the patients were low-adherent to therapy before hospitalization, regardless of sex. Low-adherent patients were more likely diabetic (40%) and employed (40%). Sex-stratified analysis showed that low-adherent men were more likely to be employed (58 vs. 33%) and not primary earners (73 vs. 54%), with more masculine traits of personality, as compared with medium-high adherent men. Interestingly, women reporting medication low-adherence were similar for clinical and gender-related factors to those with medium-high adherence, except for diabetes (42 vs. 20%, p = 0.004). In a multivariate adjusted model only employed status was associated with poor medication adherence (OR 0.55, 95%CI 0.31–0.97). However, in the sex-stratified analysis, diabetes was independently associated with medication adherence only in women (OR 0.36; 95%CI 0.13–0.96), whereas a higher masculine BSRI was the only factor associated with medication adherence in men (OR 0.59, 95%CI 0.35–0.99).Conclusion: Pre-admission medication adherence is common in patients hospitalized for IHD, regardless of sex. However, patient-related factors such as diabetes, employment, and personality traits are associated with adherence in a sex-specific manner

    Choroidal neovascularization after laser-assited in situ keratomileusis following penetrating keratoplasty

    No full text
    PURPOSE: To describe a case of choroidal neovascularization (CNV) after laser in situ keratomileusis (LASIK) following penetrating keratoplasty (PK). METHODS: Case report. RESULTS: A 30-year-old man underwent PK in both eyes for bilateral keratoconus in 1997. Two years later, best-corrected visual acuity (BCVA) was 20/40 (-6=-4.50 x 170 degrees ) in RE and 20/20 (-1.50=-0.50 x 90 degrees ) in LE. To reduce the anisometropic defect, LASIK was performed in RE. After surgery, the refractive defect in RE reduced to -1.75 x 125 degrees and BCVA improved to 20/25. Six months after LASIK the patient presented loss of vision and metamorphopsia in RE due to choroidal neovascularization. BCVA was reduced to 20/200. Photodynamic therapy was performed in RE; 1 year later BCVA was stable at 20/200. CONCLUSION: Vitreoretinal complications after LASIK occur rarely. The potential relationship between CNV and LASIK is discussed

    BAG3 regulates formation of the SNARE complex and insulin secretion

    No full text
    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release
    corecore