110 research outputs found

    High-dimensional analysis of the aging immune system: verification of age-associated differences in immune signaling responses in healthy donors.

    Get PDF
    BACKGROUND Single-cell network profiling (SCNP) is a multiparametric flow cytometry-based approach that simultaneously measures evoked signaling in multiple cell subsets. Previously, using the SCNP approach, age-associated immune signaling responses were identified in a cohort of 60 healthy donors. METHODS In the current study, a high-dimensional analysis of intracellular signaling was performed by measuring 24 signaling nodes in 7 distinct immune cell subsets within PBMCs in an independent cohort of 174 healthy donors [144 elderly (>65 yrs); 30 young (25-40 yrs)]. RESULTS Associations between age and 9 immune signaling responses identified in the previously published 60 donor cohort were confirmed in the current study. Furthermore, within the current study cohort, 48 additional immune signaling responses differed significantly between young and elderly donors. These associations spanned all profiled modulators and immune cell subsets. CONCLUSIONS These results demonstrate that SCNP, a systems-based approach, can capture the complexity of the cellular mechanisms underlying immunological aging. Further, the confirmation of age associations in an independent donor cohort supports the use of SCNP as a tool for identifying reproducible predictive biomarkers in areas such as vaccine response and response to cancer immunotherapies

    Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments

    Get PDF
    In this study, bio-based substances (BBS) obtained from composted urban biowaste are used as stabilizers for the synthesis of magnet-sensitive nanoparticles (NPs). The BBS-stabilized NPs are characterized by means of different techniques (FTIR, XRD, SEM, BET analysis, magnetization curves). Additionally, TGA coupled on-line with FTIR and GC/MS analysis of the exhausted gas are performed in order to simultaneously identify all the degradation products and evaluate the exact composition of such BBS-stabilized materials. Moreover, Fenton-like or photo-Fenton-like experiments carried out at circumneutral pH are performed in order to evaluate the BBS-functionalized NPs photo-activity towards the degradation of caffeine (taken as model emerging pollutant). The obtained promising results encourage the use of BBS as a green alternative tool for the preparation of smart materials with enhanced magnet-sensitive properties, also suitable for applications in wastewater purification treatments.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    The need for a network to establish and validate predictive biomarkers in cancer immunotherapy.

    Get PDF
    Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, the entire medical oncology field has been revolutionized by the introduction of immune checkpoints inhibitors. Despite success in a variety of malignancies, responses typically only occur in a small percentage of patients for any given histology or treatment regimen. There are also concerns that immunotherapies are associated with immune-related toxicity as well as high costs. As such, identifying biomarkers to determine which patients are likely to derive clinical benefit from which immunotherapy and/or be susceptible to adverse side effects is a compelling clinical and social need. In addition, with several new immunotherapy agents in different phases of development, and approved therapeutics being tested in combination with a variety of different standard of care treatments, there is a requirement to stratify patients and select the most appropriate population in which to assess clinical efficacy. The opportunity to design parallel biomarkers studies that are integrated within key randomized clinical trials could be the ideal solution. Sample collection (fresh and/or archival tissue, PBMC, serum, plasma, stool, etc.) at specific points of treatment is important for evaluating possible biomarkers and studying the mechanisms of responsiveness, resistance, toxicity and relapse. This white paper proposes the creation of a network to facilitate the sharing and coordinating of samples from clinical trials to enable more in-depth analyses of correlative biomarkers than is currently possible and to assess the feasibilities, logistics, and collated interests. We propose a high standard of sample collection and storage as well as exchange of samples and knowledge through collaboration, and envisage how this could move forward using banked samples from completed studies together with prospective planning for ongoing and future clinical trials

    The identification of TCF1+ progenitor exhausted T cells in THRLBCL may predict a better response to PD-1/PD-L1 blockade

    Get PDF
    T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare and aggressive variant of diffuse large B-cell lymphoma (DLBCL) that usually affects young to middle-aged patients, with disseminated disease at presentation. The tumor microenvironment (TME) plays a key role in THRLBCL due to its peculiar cellular composition (< 10% neoplastic B cells interspersed in a cytotoxic T-cell/histiocyte-rich background). A significant percentage of THRLBCL is refractory to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (RCHOP)-based regimens and to chimeric antigen receptor T-cell therapy; thus, the development of a specific therapeutic approach for these patients represents an unmet clinical need. To better understand the interaction of immune cells in THRLBCL TME and identify more promising therapeutic strategies, we compared the immune gene expression profiles of 12 THRLBCL and 10 DLBCL samples, and further corroborated our findings in an extended in silico set. Gene coexpression network analysis identified the predominant role of the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis in the modulation of the immune response. Furthermore, the PD-1/PD-L1 activation was flanked by the overexpression of 48 genes related to the functional exhaustion of T cells. Globally, THRLBCL TME was highly interferon-inflamed and severely exhausted. The immune gene profiling findings strongly suggest that THRLBCL may be responsive to anti-PD-1 therapy but also allowed us to take a step forward in understanding THRLBCL TME. Of therapeutic relevance, we validated our results by immunohistochemistry, identifying a subset of TCF1(+) (T cell-specific transcription factor 1, encoded by the TCF7 gene) progenitor exhausted T cells enriched in patients with THRLBCL. This subset of TCF1(+) exhausted T cells correlates with good clinical response to immune checkpoint therapy and may improve prediction of anti-PD-1 response in patients with THRLBCL

    Immunotherapy biomarkers 2016: overcoming the barriers.

    Get PDF
    This report summarizes the symposium, \u27Immunotherapy Biomarkers 2016: Overcoming the Barriers\u27, which was held on April 1, 2016 at the National Institutes of Health in Bethesda, Maryland. The symposium, cosponsored by the Society for Immunotherapy of Cancer (SITC) and the National Cancer Institute (NCI), focused on emerging immunotherapy biomarkers, new technologies, current hurdles to further progress, and recommendations for advancing the field of biomarker development

    Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial

    Full text link
    Abstract Background How the immune microenvironment changes during neoadjuvant chemotherapy of primary breast cancer is not well understood. Methods We analyzed pre- and post-treatment samples from 60 patients using the NanoString PanCancer IO360â„¢ assay to measure the expression of 750 immune-related genes corresponding to 14 immune cell types and various immune functions, and assessed TIL counts and PD-L1 protein expression by immunohistochemistry. Treatment associated changes in gene expression levels were compared using t-test with Bonferroni correction. TIL count, PD-L1 protein and immune metagenes were compared using Wilcoxon test. Baseline immune markers were correlated with pathologic complete response (pCR) using estrogen receptor and treatment arm adjusted logistic regression. Results At baseline, high TIL counts and high expression of chemoattractant cytokines (CCL21, CCL19) and cytotoxic T cell markers were associated with higher pCR rate. High expression of stromal genes (VEGFB, TGFB3, PDGFB, FGFR1, IGFR1), mast and myeloid inflammatory cell metagenes, stem cell related genes (CD90, WNT11, CTNNB1) and CX3CR1, and IL11RA were associated with residual disease (RD). After treatment, in cases with pCR, TIL counts and most immune genes decreased significantly. Among RD cases, TIL counts and PD-L1 expression did not change but cellular stress and hypoxia associated genes (DUSP1, EGR1), and IL6, CD36, CXCL2, CD69 and the IL8/VEGF metagene increased. Conclusions Activated T cells in the tumor microenvironment are associated with pCR whereas stromal functions are associated with residual disease. Most immune functions decrease during neoadjuvant chemotherapy but several immunotherapy targets (PD-L1, IL6, IL8) remain expressed in RD suggesting potential therapeutic strategies.https://deepblue.lib.umich.edu/bitstream/2027.42/148572/1/40425_2019_Article_563.pd
    • …
    corecore