7 research outputs found

    Challenges and science-based implications for modern management and conservation of European ungulate populations

    Get PDF
    Wildlife management systems face growing challenges to cope with increasingly complex interactions between wildlife populations, the environment and human activities. In this position statement, we address the most important issues characterising current ungulate conservation and management in Europe. We present some key points arising from ecological research that may be critical for a reassessment of ungulate management in the future. Ecosystem . Population sustainability . Science-basedmanagement .Wildlifemanagement .Adaptive managemen

    Specific features of bronchial inflammation in asthma patients with airway hyper-responsiveness to cold and osmotic stimuli

    No full text
    Background. Excessive airway reaction to combined effects of environmental factors is very common in patients with asthma. The understanding of the molecular-cellular mechanisms of this hyperresponsiveness is very important.Aim. The aim of the work was to study granulocyte segment of bronchial inflammation in correlation with cytokine regulation and lipid peroxidation in patients with airway hyperresponsiveness to cold and osmotic stimuli.Materials and ĐŒethods. In 43 patients with partially controlled and uncontrolled persistent asthma with cold and osmotic airway hyperresponsiveness (group 1) asthma symptoms and lung function were assessed, the level of IL-5, IL-12 in exhaled breath condensate (EBC) and the total amount of myeloperoxidase (MPO) in induced sputum (IS) were measured; the number of neutrophils and eosinophils in smears of IS was counted. Basing on cytological and cytochemical analysis of smears of IS, the activity coefficients of MPO in granular leukocytes, the degree of cell destruction and the intensity of cytolysis were calculated. The contents of lipid hydroperoxide (LHP) and MPO in the blood serum were measured. A control group (group 2) consisted of asthma patients without airway reaction to cold and osmotic stimuli (11 people).Results. In the first group in comparison with the second one high levels of IL-12 were found (2,94 ± 0,09 vs. 2,53 ± 0,13 pg/mL; р = 0,024), IL-5 (3,64 ± 0,37 vs. 2,15 ± 0,14 pg/mL; р = 0,0001); the increase of neutrophils in IM (35,4 ± 3,5 vs. 17,2 ± 2,0%; р = 0,014); higher granulocytes cytolysis (0,38 ± 0,02 vs. 0,26 ± 0,02; р = 0,013), which correlated for neutrophils with the level of IL-12 (r = 0,46; р = 0,026); there was found out the increase of MPO concentration in IS (199,7 ± 49,0 vs. 81,4 ± 26,2 pixels; р = 0,039). The increased level of LHP in the blood serum correlated with the level of MPO in IS (r = 0,48; р = 0,039) and IL-5 in EBC (r = 0,71; р = 0,031).Conclusion. Airway hyperresponsiveness to cold and osmotic stimuli in patients with asthma is characterized by the relationship between the nature of Th1 and Th2 cytokine profile, the structure of granulocyte segment of bronchial inflammation, the enzymatic function of granulocytes, MPO activity and systemic formation of suboxidized lipid peroxidation products. Activation of granulocyte segment of inflammatory pattern in patients with asthma may be considered a factor of influence on the development and maintenance of airway hyperresponsiveness due to the escalation of oxidative stress and persistent inflammation

    Magnetism and Electronic State of Iron Ions on the Surface and in the Core of TiO<sub>2</sub> Nanoparticles

    No full text
    In this paper, the electron and magnetic state of iron placed either on the surface or in the core of TiO2 nanoparticles were investigated using magnetometric methods, electron paramagnetic resonance (EPR) and Mössbauer spectroscopy. It was demonstrated that the EPR spectra of TiO2 samples with iron atoms localized both on the surface and in the core of specific features depending on the composition and size of the nanoparticles. Theoretical calculations using the density functional theory (DFT) method demonstrated that the localization of Fe atoms on the surface is characterized by a considerably larger set of atomic configurations as compared to that in the core of TiO2 nanoparticles. Mössbauer spectra of the samples doped with Fe atoms both on the surface and in the core can be described quite satisfactorily using two and three doublets with different quadrupole splitting, respectively. This probably demonstrates that the Fe atoms on particle surface and in the bulk are in different unlike local surroundings. All iron ions, both on the surface and in the core, were found to be in the Fe3+ high-spin state
    corecore