153 research outputs found

    M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra

    Full text link
    We show that the zeroth cohomology of M. Kontsevich's graph complex is isomorphic to the Grothendieck-Teichmueller Lie algebra grt_1. The map is explicitly described. This result has applications to deformation quantization and Duflo theory. We also compute the homotopy derivations of the Gerstenhaber operad. They are parameterized by grt_1, up to one class (or two, depending on the definitions). More generally, the homotopy derivations of the (non-unital) E_n operads may be expressed through the cohomology of a suitable graph complex. Our methods also give a second proof of a result of H. Furusho, stating that the pentagon equation for grt_1-elements implies the hexagon equation

    Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity

    Get PDF
    In this work we investigate the canonical quantization of 2+1 gravity with cosmological constant Λ>0\Lambda>0 in the canonical framework of loop quantum gravity. The unconstrained phase space of gravity in 2+1 dimensions is coordinatized by an SU(2) connection AA and the canonically conjugate triad field ee. A natural regularization of the constraints of 2+1 gravity can be defined in terms of the holonomies of A+=A+ΛeA+=A + \sqrt\Lambda e. As a first step towards the quantization of these constraints we study the canonical quantization of the holonomy of the connection Aλ=A+λeA_{\lambda}=A+\lambda e on the kinematical Hilbert space of loop quantum gravity. The holonomy operator associated to a given path acts non trivially on spin network links that are transversal to the path (a crossing). We provide an explicit construction of the quantum holonomy operator. In particular, we exhibit a close relationship between the action of the quantum holonomy at a crossing and Kauffman's q-deformed crossing identity. The crucial difference is that (being an operator acting on the kinematical Hilbert space of LQG) the result is completely described in terms of standard SU(2) spin network states (in contrast to q-deformed spin networks in Kauffman's identity). We discuss the possible implications of our result.Comment: 19 pages, references added. Published versio

    Defect loops in gauged Wess-Zumino-Witten models

    Get PDF
    We consider loop observables in gauged Wess-Zumino-Witten models, and study the action of renormalization group flows on them. In the WZW model based on a compact Lie group G, we analyze at the classical level how the space of renormalizable defects is reduced upon the imposition of global and affine symmetries. We identify families of loop observables which are invariant with respect to an affine symmetry corresponding to a subgroup H of G, and show that they descend to gauge-invariant defects in the gauged model based on G/H. We study the flows acting on these families perturbatively, and quantize the fixed points of the flows exactly. From their action on boundary states, we present a derivation of the "generalized Affleck-Ludwig rule, which describes a large class of boundary renormalization group flows in rational conformal field theories.Comment: 43 pages, 2 figures. v2: a few typos corrected, version to be published in JHE

    On the crossing relation in the presence of defects

    Full text link
    The OPE of local operators in the presence of defect lines is considered both in the rational CFT and the c>25c>25 Virasoro (Liouville) theory. The duality transformation of the 4-point function with inserted defect operators is explicitly computed. The two channels of the correlator reproduce the expectation values of the Wilson and 't Hooft operators, recently discussed in Liouville theory in relation to the AGT conjecture.Comment: TEX file with harvmac; v3: JHEP versio

    Boundary conditions in Toda theories and minimal models

    Get PDF
    We show that the disc bulk one-point functions in a sl(n) Toda conformal field theory have a well-defined limit for the central charge c=n-1, and that their limiting values can be obtained from a limit of bulk one-point functions in the W_n minimal models. This comparison leads to a proposal for one-point functions for twisted boundary conditions in Toda theory.Comment: 33 pages, 1 figure; v2: Minor corrections; v3: version accepted at JHE

    SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls

    Full text link
    We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d SL(2,R) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d N=2 superconformal field theory on S^3, which is realized as a duality domain wall in a 4d gauge theory on S^4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmuller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.Comment: 53+1 pages, 14 figures; v2: typos corrected, references adde

    Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe

    Get PDF
    In three spacetime dimensions, general relativity drastically simplifies, becoming a ``topological'' theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2+1)-dimensional vacuum gravity in the setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms, additions, missing references welcome; v2: minor changes, added reference

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio

    A Chiral Magnetic Effect from AdS/CFT with Flavor

    Full text link
    For (3+1)-dimensional fermions, a net axial charge and external magnetic field can lead to a current parallel to the magnetic field. This is the chiral magnetic effect. We use gauge-gravity duality to study the chiral magnetic effect in large-Nc, strongly-coupled N=4 supersymmetric SU(Nc) Yang-Mills theory coupled to a number Nf << Nc of N=2 hypermultiplets in the Nc representation of SU(Nc), i.e. flavor fields. Specifically, we introduce an external magnetic field and a time-dependent phase for the mass of the flavor fields, which is equivalent to an axial chemical potential for the flavor fermions, and we compute holographically the resulting chiral magnetic current. For massless flavors we find that the current takes the value determined by the axial anomaly. For massive flavors the current appears only in the presence of a condensate of pseudo-scalar mesons, and has a smaller value than for massless flavors, dropping to zero for sufficiently large mass or magnetic field. The axial symmetry in our system is part of the R-symmetry, and the states we study involve a net flow of axial charge to the adjoint sector from an external source coupled to the flavors. We compute the time rate of change of axial charge and of energy both in field theory and from holography, with perfect agreement. In contrast to previous holographic models of the chiral magnetic effect, in our system the vector current is conserved and gauge-invariant without any special counterterms.Comment: 54 pages, 18 eps files in 6 figure
    corecore