3,367 research outputs found
New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background
Supernovae are rare nearby, but they are not rare in the Universe, and all
past core-collapse supernovae contributed to the Diffuse Supernova Neutrino
Background (DSNB), for which the near-term detection prospects are very good.
The Super-Kamiokande limit on the DSNB electron {\it antineutrino} flux,
cm s, is just above the
range of recent theoretical predictions based on the measured star formation
rate history. We show that the Sudbury Neutrino Observatory should be able to
test the corresponding DSNB electron {\it neutrino} flux with a sensitivity as
low as cm s,
improving the existing Mont Blanc limit by about three orders of magnitude.
While conventional supernova models predict comparable electron neutrino and
antineutrino fluxes, it is often considered that the first (and
forward-directed) SN 1987A event in the Kamiokande-II detector should be
attributed to electron-neutrino scattering with an electron, which would
require a substantially enhanced electron neutrino flux. We show that with the
required enhancements in either the burst or thermal phase fluxes, the
DSNB electron neutrino flux would generally be detectable in the Sudbury
Neutrino Observatory. A direct experimental test could then resolve one of the
enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a
serious misunderstanding of supernova physics, or was simply an unlikely
statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury
Neutrino Observatory is an important complement to the electron antineutrino
sensitivity of Super-Kamiokande in the quest to understand the DSNB.Comment: 10 pages, 3 figure
The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators
We develop a method for the determination of thecdynamics of dissipative
quantum systems in the limit of large number of quanta N, based on the
1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the
quantum-classical correspondence. Using this method, we find analytically the
dynamics of nonclassical states generation in the higher-order anharmonic
dissipative oscillators for an arbitrary temperature of a reservoir. We show
that the quantum correction to the classical motion increases with time
quadratically up to some maximal value, which is dependent on the degree of
nonlinearity and a damping constant, and then it decreases. Similarities and
differences with the corresponding behavior of the quantum corrections to the
classical motion in the Hamiltonian chaotic systems are discussed. We also
compare our results obtained for some limiting cases with the results obtained
by using other semiclassical tools and discuss the conditions for validity of
our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version
(stylistic corrections
2D Conformal Field Theories and Holography
It is known that the chiral part of any 2d conformal field theory defines a
3d topological quantum field theory: quantum states of this TQFT are the CFT
conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT
relation exists also for the full CFT. The 3d topological theory that arises is
a certain ``square'' of the chiral TQFT. Such topological theories were studied
by Turaev and Viro; they are related to 3d gravity. We establish an
operator/state correspondence in which operators in the chiral TQFT correspond
to states in the Turaev-Viro theory. We use this correspondence to interpret
CFT correlation functions as particular quantum states of the Turaev-Viro
theory. We compute the components of these states in the basis in the
Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we
obtain is a generalization of the Verlinde formula. The later is obtained from
our expression for a zero colored graph. Our results give an interesting
``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure
On interrelations between Sibgatullin's and Alekseev's approaches to the construction of exact solutions of the Einstein-Maxwell equations
The integral equations involved in Alekseev's "monodromy transform" technique
are shown to be simple combinations of Sibgatullin's integral equations and
normalizing conditions. An additional complex conjugation introduced by
Alekseev in the integrands makes his scheme mathematically inconsistent;
besides, in the electrovac case all Alekseev's principal value integrals
contain an intrinsic error which has never been identified before. We also
explain how operates a non-trivial double-step algorithm devised by Alekseev
for rewriting, by purely algebraic manipulations and in a different (more
complicated) parameter set, any particular specialization of the known
analytically extended N-soliton electrovac solution obtained in 1995 with the
aid of Sibgatullin's method.Comment: 7 pages, no figures, section II extende
Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices
We consider the spontaneous creation of a dc voltage across a strongly
coupled semiconductor superlattice subjected to THz radiation. We show that the
dc voltage may be approximately proportional either to an integer or to a half-
integer multiple of the frequency of the applied ac field, depending on the
ratio of the characteristic scattering rates of conducting electrons. For the
case of an ac field frequency less than the characteristic scattering rates, we
demonstrate the generation of an unquantized dc voltage.Comment: 6 pages, 3 figures, RevTEX, EPSF. Revised version v3: corrected typo
Probes of Lorentz Violation in Neutrino Propagation
It has been suggested that the interactions of energetic particles with the
foamy structure of space-time thought to be generated by quantum-gravitational
(QG) effects might violate Lorentz invariance, so that they do not propagate at
a universal speed of light. We consider the limits that may be set on a linear
or quadratic violation of Lorentz invariance in the propagation of energetic
neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from
supernova explosions and the OPERA long-baseline neutrino experiment. Using the
SN1987a neutrino data from the Kamioka II, IMB and Baksan experiments, we set
the limits M_\nuQG1 > 2.7(2.5)x10^10 GeV for subluminal (superluminal)
propagation, respectively, and M_\nuQG2 >4.6(4.1)x10^4 GeV at the 95%
confidence level. A future galactic supernova at a distance of 10 kpc would
have sensitivity to M_\nuQG1 > 2(4)x10^11 GeV for subluminal (superluminal)
propagation, respectively, and M_\nuQG2 > 2(4)x10^5 GeV. With the current CNGS
extraction spill length of 10.5 micro seconds and with standard clock
synchronization techniques, the sensitivity of the OPERA experiment would reach
M_\nuQG1 ~ 7x10^5 GeV (M_\nuQG2 ~ 8x10^3 GeV) after 5 years of nominal running.
If the time structure of the SPS RF bunches within the extracted CNGS spills
could be exploited, these figures would be significantly improved to M_\nuQG1 ~
5x10^7 GeV (M_\nuQG2 ~ 4x10^4 GeV). These results can be improved further if
similar time resolution can be achieved with neutrino events occurring in the
rock upstream of the OPERA detector: we find potential sensitivities to
M_\nuQG1 ~ 4x10^8 GeV and M_\nuQG2 ~ 7x10^5 GeV.Comment: 33 pages, 22 figures, version accepted for publication in Physical
Review
Grafting and Poisson structure in (2+1)-gravity with vanishing cosmological constant
We relate the geometrical construction of (2+1)-spacetimes via grafting to
phase space and Poisson structure in the Chern-Simons formulation of
(2+1)-dimensional gravity with vanishing cosmological constant on manifolds of
topology , where is an orientable two-surface of genus
. We show how grafting along simple closed geodesics \lambda is
implemented in the Chern-Simons formalism and derive explicit expressions for
its action on the holonomies of general closed curves on S_g. We prove that
this action is generated via the Poisson bracket by a gauge invariant
observable associated to the holonomy of . We deduce a symmetry
relation between the Poisson brackets of observables associated to the Lorentz
and translational components of the holonomies of general closed curves on S_g
and discuss its physical interpretation. Finally, we relate the action of
grafting on the phase space to the action of Dehn twists and show that grafting
can be viewed as a Dehn twist with a formal parameter satisfying
.Comment: 43 pages, 10 .eps figures; minor modifications: 2 figures added,
explanations added, typos correcte
Tentative Detection of the Nitrosylium Ion in Space
We report the tentative detection in space of the nitrosylium ion, NO.
The observations were performed towards the cold dense core Barnard 1-b. The
identification of the NO =2--1 line is supported by new laboratory
measurements of NO rotational lines up to the =8--7 transition
(953207.189\,MHz), which leads to an improved set of molecular constants: \,MHz, \,kHz, and \,MHz. The profile of the feature assigned to NO exhibits two
velocity components at 6.5 and 7.5 km s, with column densities of and cm, respectively. New
observations of NO and HNO, also reported here, allow to estimate the following
abundance ratios: (NO)/(NO), and
(HNO)/(NO). This latter value provides important constraints
on the formation and destruction processes of HNO. The chemistry of NO and
other related nitrogen-bearing species is investigated by the means of a
time-dependent gas phase model which includes an updated chemical network
according to recent experimental studies. The predicted abundance for NO
and NO is found to be consistent with the observations. However, that of HNO
relative to NO is too high. No satisfactory chemical paths have been found to
explain the observed low abundance of HNO. HSCN and HNCS are also reported here
with an abundance ratio of . Finally, we have searched for NNO,
NO, HNNO, and NNOH, but only upper limits have been obtained for
their column density, except for the latter for which we report a tentative
3- detection.Comment: To appear in the Astrophysical Journal October 20, 201
- …