6 research outputs found

    3D spheroid models for in vitro evaluation of nanoparticles for cancer therapy

    Get PDF
    Many different nanoparticle delivery systems have been reported as potential cancer therapeutics, however, the tumour penetration and uptake characteristics have been determined for very few systems. Animal models are effective for assessing tumour localisation of nanosystems, but difficult to use for studying penetration beyond the vasculature. In this work, defined HCT 116 colorectal cancer spheroids were used to study the effect of nanoparticle size and surface modifications on their penetration and uptake. Incubation of spheroids with Hoechst 33342 resulted in a dye gradient which facilitated discrimination between the populations of cells in the core and at the periphery of spheroids by flow cytometry based on the degree of Hoechst staining. This model was used to compare doxorubicin and Doxil, a range of model polystyrene nanoparticles in different sizes (30 nm, 50 nm, 100 nm) and with different surface chemistry (50 nm unmodified, carboxylated, aminated) and polyethylene glycol modified NPs prepared from a promising new functionalized biodegradable polymer (poly(glycerol-adipate), PGA). Unmodified polystyrene nanoparticles (30 nm/50 nm) were able to penetrate to the core of HCT 116 spheroids more efficiently than larger polystyrene nanoparticles (100 nm). Penetration was also dependent on surface charge. PGA NPs of 100 nm showed similar penetration into spheroids as 50 nm polystyrene nanoparticles, and PEG surface modification significantly improved penetration into the spheroid core. The new spheroid model with Hoechst staining is shown to be a useful model for assessing NPs penetration and demonstrates the importance of controlling physical properties when designing nanomedicine

    Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra-and intracellular environments

    Get PDF
    In the treatment of lung cancer, there is an urgent need of innovative medicines to optimize pharmacological responses of conventional chemotherapeutics while attenuating side effects. Here, we have exploited some relatively unexplored subtle differences in reduction potential, associated with cancer cell microenvironments in addition to the well-known changes in intracellular redox environment. We report the synthesis and application of novel redox-responsive PLGA (poly(lactic-co-glycolic acid)) -PEG(polyethylene glycol) nanoparticles (RR-NPs) programmed to change surface properties when entering tumor microenvironments, thus enhance cell internalization of the particles and their drug cargo. The new co-polymers, in which PEG and PLGA were linked by ‘anchiomeric effector’ dithiylethanoate esters were synthesized by a combination of ring-opening polymerization and Michael addition reactions and employed to prepare NPs. Non redox-responsive nanoparticles (nRR-NPs) based on related PLGA-PEG copolymers were also prepared as comparators. Spherical NPs of around 120 nm diameter with a low polydispersity index and negative zeta potentials as well as good drug loading of docetaxel were obtained. The NPs showed prolonged stability in relevant simulated biological fluids and a high ability to penetrate an artificial mucus layer due to the presence of the external PEG coating. Stability, FRET and drug release studies in conditions simulating intracellular reductive environments demonstrated a fast disassembly of the external shell of the NPs, thus triggering on-demand drug release. FACS measurements and confocal microscopy showed increased and faster uptake of RR-NPs in both 2D- and 3D- cell culture models of lung cancer compared to nRR-NPs. In particular, the ‘designed-in’ reductive instability of RR-NPs in conditioned cell media, the fast PEG release in the extracellular compartment, as well as a diminution of uptake rate in control experiments where extracellular thiols were neutralized, suggested a partial extracellular release of the PEG fringe that promoted rapid internalization of the residual NPs into cells. Taken together, these results provide further evidence of the effectiveness of PEGylated reducible nanocarriers to permeate mucus layer barriers, and establish a new means to enhance cancer cell uptake of drug carriers by extra-and intra-cellular cleavage of protein-and cell-shielding hydrophilic blocks

    Penetration and uptake of Nanoparticles in 3D tumour spheroids

    Get PDF
    Animal models are effective for assessing tumour localisation of nanosystems, but difficult to use for studying penetration beyond the vasculature. Here, we have used well-characterised HCT116 colorectal cancer spheroids to study the effect of nanoparticle (NP) physicochemical properties on penetration and uptake. Incubation of spheroids with Hoechst 33342 resulted in a dye gradient which facilitated discrimination between the populations of cells in the core and at the periphery of spheroids by flow cytometry. This approach was used to compare doxorubicin and liposomal doxorubicin (Caelyx®), and a range of model poly(styrene) nanoparticles of different sizes (30 nm, 50 nm, 100 nm) and with different surface chemistries (50 nm uniform plain, carboxylated, aminated and a range of NPs and polyethylene glycol modified NPs prepared from a promising new functionalized biodegradable polymer (poly(glycerol-adipate), PGA). Unmodified poly(styrene) nanoparticles (30 nm/50 nm) were able to penetrate to the core of HCT116 spheroids more efficiently than larger poly(styrene) nanoparticles (100 nm). Surprisingly, penetration of 30 and 50nm particles was as good as clinically relevant doxorubicin concentrations. However penetration was reduced with higher surface charge. PGA NPs of 100 nm showed similar penetration into spheroids as 50 nm poly(styrene) nanoparticles, which may be related to polymer flexibility. PEG surface modification of polymeric particles significantly improved penetration into the spheroid core. The new model combining the use of spheroids Hoechst staining and flow cytometry was a useful model for assessing NP penetration and gives useful insights into the effects of NPs physical properties when designing nanomedicines

    Control of aggregation temperatures in mixed and blended cytocompatible thermoresponsive block co-polymer nanoparticles

    Get PDF
    A small library of thermoresponsive amphiphilic copolymers based on polylactide-block-poly((2-(2-methoxyethoxy)ethyl methacrylate)-co-(oligoethylene glycol methacrylate)) (PLA-b-P(DEGMA)-co-(OEGMA)), was synthesised by copper-mediated controlled radical polymerisation (CRP) with increasing ratios of OEGMA:DEGMA. These polymers were combined in two ways to form nanoparticles with controllable thermal transition temperatures as measured by particle aggregation. The first technique involved the blending of two (PLA-b-P(DEGMA)-co-(OEGMA)) polymers together prior to assembling NPs. The second method involved mixing pre-formed nanoparticles of single (PLA-b-P(DEGMA)-co-(OEGMA)) polymers. The observed critical aggregation temperature Tt did not change in a linear relationship with the ratios of each copolymer either in the nanoparticles blended from different copolymers or in the mitures of pre-formed nanoparticles. However, where co-polymer mixtures were based on (OEG)9MA ratios within 5-10 mole% , a linear relationship between (OEG)9MA composition in the blends and Tt was obtained. The data suggest that OEGMA-based copolymers are tunable over a wide temperature range given suitable co-monomer content in the linear polymers or nanoparticles. Moreover, the thermal transitions of the nanoparticles were reversible and repeatable, with the cloud point curves being essentially invariant across at least three heating and cooling cycles, and a selected nanoparticle formulation was found to be readily endocytosed in representative cancer cells and fibroblasts

    3D spheroid models for in vitro evaluation of nanoparticles for cancer therapy

    No full text
    Many different nanoparticle delivery systems have been reported as potential cancer therapeutics, however, the tumour penetration and uptake characteristics have been determined for very few systems. Animal models are effective for assessing tumour localisation of nanosystems, but difficult to use for studying penetration beyond the vasculature. In this work, defined HCT 116 colorectal cancer spheroids were used to study the effect of nanoparticle size and surface modifications on their penetration and uptake. Incubation of spheroids with Hoechst 33342 resulted in a dye gradient which facilitated discrimination between the populations of cells in the core and at the periphery of spheroids by flow cytometry based on the degree of Hoechst staining. This model was used to compare doxorubicin and Doxil, a range of model polystyrene nanoparticles in different sizes (30 nm, 50 nm, 100 nm) and with different surface chemistry (50 nm unmodified, carboxylated, aminated) and polyethylene glycol modified NPs prepared from a promising new functionalized biodegradable polymer (poly(glycerol-adipate), PGA). Unmodified polystyrene nanoparticles (30 nm/50 nm) were able to penetrate to the core of HCT 116 spheroids more efficiently than larger polystyrene nanoparticles (100 nm). Penetration was also dependent on surface charge. PGA NPs of 100 nm showed similar penetration into spheroids as 50 nm polystyrene nanoparticles, and PEG surface modification significantly improved penetration into the spheroid core. The new spheroid model with Hoechst staining is shown to be a useful model for assessing NPs penetration and demonstrates the importance of controlling physical properties when designing nanomedicine

    Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments

    Get PDF
    In the treatment of lung cancer, there is an urgent need of innovative medicines to optimize pharmacological responses of conventional chemotherapeutics while attenuating side effects. Here, we have exploited some relatively unexplored subtle differences in reduction potential, associated with cancer cell microenvironments in addition to the well-known changes in intracellular redox environment. We report the synthesis and application of novel redox-responsive PLGA (poly(lactic-co-glycolic acid)) -PEG (polyethylene glycol) nanoparticles (RR-NPs) programmed to change surface properties when entering tumor microenvironments, thus enhance cell internalization of the particles and their drug cargo. The new co-polymers, in which PEG and PLGA were linked by 'anchiomeric effector' dithiylethanoate esters were synthesized by a combination of ring-opening polymerization and Michael addition reactions and employed to prepare NPs. Non redox-responsive nanoparticles (nRR-NPs) based on related PLGA-PEG copolymers were also prepared as comparators. Spherical NPs of around 120\u202fnm diameter with a low polydispersity index and negative zeta potentials as well as good drug loading of docetaxel were obtained. The NPs showed prolonged stability in relevant simulated biological fluids and a high ability to penetrate an artificial mucus layer due to the presence of the external PEG coating. Stability, FRET and drug release studies in conditions simulating intracellular reductive environments demonstrated a fast disassembly of the external shell of the NPs, thus triggering on-demand drug release. FACS measurements and confocal microscopy showed increased and faster uptake of RR-NPs in both 2D- and 3D- cell culture models of lung cancer compared to nRR-NPs. In particular, the 'designed-in' reductive instability of RR-NPs in conditioned cell media, the fast PEG release in the extracellular compartment, as well as a diminution of uptake rate in control experiments where extracellular thiols were neutralized, suggested a partial extracellular release of the PEG fringe that promoted rapid internalization of the residual NPs into cells. Taken together, these results provide further evidence of the effectiveness of PEGylated reducible nanocarriers to permeate mucus layer barriers, and establish a new means to enhance cancer cell uptake of drug carriers by extra-and intra-cellular cleavage of protein- and cell-shielding hydrophilic blocks
    corecore