126 research outputs found

    Discrete localized modes supported by an inhomogeneous defocusing nonlinearity

    Full text link
    We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF)\ onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons, which do not exist in lattices with the spatially uniform SDF nonlinearity. The UnST solitons coexist with stable staggered (ST) localized modes, which are always possible under the defocusing onsite nonlinearity. The results are obtained in a numerical form, and also by means of variational approximation (VA). In the semi-infinite (truncated) system, some solutions for the UnST surface solitons are produced in an exact form. On the contrary to surface discrete solitons in uniform truncated lattices, the threshold value of the norm vanishes for the UnST solitons in the present system. Stability regions for the novel UnST solitons are identified. The same results imply the existence of ST discrete solitons in lattices with the spatially growing self-focusing nonlinearity, where such solitons cannot exist either if the nonlinearity is homogeneous. In addition, a lattice with the uniform onsite SDF nonlinearity and exponentially decaying inter-site coupling is introduced and briefly considered too. Via a similar mechanism, it may also support UnST discrete solitons, under the action of the SDF nonlinearity. The results may be realized in arrayed optical waveguides and collisionally inhomogeneous Bose-Einstein condensates trapped in deep optical lattices. A generalization for a two-dimensional system is briefly considered too.Comment: 14 pages, 7 figures, accepted for publication in PR

    Localized modes in mini-gaps opened by periodically modulated intersite coupling in two-dimensional nonlinear lattices

    Full text link
    Spatially periodic modulation of the intersite coupling in two-dimensional (2D) nonlinear lattices modifies the eigenvalue spectrum by opening mini-gaps in it. This work aims to build stable localized modes in the new bandgaps. Numerical analysis shows that single-peak and composite two- and four-peak discrete static solitons and breathers emerge as such modes in certain parameter areas inside the mini-gaps of the 2D superlattice induced by the periodic modulation of the intersite coupling along both directions.The single-peak solitons and four-peak discrete solitons are stable in a part of their existence domain, while unstable stationary states (in particular, two-soliton complexes) may readily transform into robust localized breathers.Comment: Chaos, in pres

    Nonlinear symmetry breaking of Aharonov-Bohm cages

    Get PDF
    We study the influence of mean field cubic nonlinearity on Aharonov-Bohm caging in a diamond lattice with synthetic magnetic flux. For sufficiently weak nonlinearities the Aharonov-Bohm caging persists as periodic nonlinear breathing dynamics. Above a critical nonlinearity, symmetry breaking induces a sharp transition in the dynamics and enables stronger wavepacket spreading. This transition is distinct from other flatband networks, where continuous spreading is induced by effective nonlinear hopping or resonances with delocalized modes, and is in contrast to the quantum limit, where two-particle hopping enables arbitrarily large spreading. This nonlinear symmetry breaking transition is readily observable in femtosecond laser-written waveguide arrays.Comment: 6 pages, 5 figure

    High- and low-frequency phonon modes in dipolar quantum gases trapped in deep lattices

    Full text link
    We study normal modes propagating on top of the stable uniform background in arrays of dipolar Bose-Einstein condensate (BEC) droplets trapped in a deep optical lattice. Both the on-site mean-field dynamics of the droplets and their displacement due to the repulsive dipole-dipole interactions (DDIs) are taken into account. Dispersion relations for two modes, \textit{viz}., high- and low- frequency counterparts of optical and acoustic phonon modes in condensed matter, are derived analytically and verified by direct simulations, for both cases of the repulsive and attractive contact interactions. The (counterpart of the) optical-phonon branch does not exist without the DDIs. These results are relevant in the connection to emerging experimental techniques enabling real-time imaging of the condensate dynamics and direct experimental measurement of phonon dispersion relations in BECs.Comment: Physical Review A, in pres

    Soliton stability and collapse in the discrete nonpolynomial Schrodinger equation with dipole-dipole interactions

    Full text link
    The stability and collapse of fundamental unstaggered bright solitons in the discrete Schrodinger equation with the nonpolynomial on-site nonlinearity, which models a nearly one-dimensional Bose-Einstein condensate trapped in a deep optical lattice, are studied in the presence of the long-range dipole-dipole (DD) interactions. The cases of both attractive and repulsive contact and DD interaction are considered. The results are summarized in the form of stability/collapse diagrams in the parametric space of the model, which demonstrate that the the attractive DD interactions stabilize the solitons and help to prevent the collapse. Mobility of the discrete solitons is briefly considered too.Comment: 6 figure

    Influence of different disorder types on Aharonov-Bohm caging in the diamond chain

    Get PDF
    The linear diamond chain with fine-tuned effective magnetic flux has a completely flat energy spectrum and compactly-localized eigenmodes, forming an Aharonov-Bohm cage. We study numerically how this localization is affected by different types of disorder (static and time-evolving) relevant to recent realizations of Aharonov-Bohm cages in periodically-modulated optical waveguide arrays. We demonstrate robustness of localization under static and periodically-evolving disorder, while in contrast non-quenched (time-dependent) disorder leads to wavepacket spreading and delocalization.Comment: 13 figure

    Discrete solitons in an array of quantum dots

    Full text link
    We develop a theory for the interaction of classical light fields with an a chain of coupled quantum dots (QDs), in the strong-coupling regime, taking into account the local-field effects. The QD chain is modeled by a one-dimensional (1D) periodic array of two-level quantum particles with tunnel coupling between adjacent ones. The local-field effect is taken into regard as QD depolarization in the Hartree-Fock-Bogoliubov approximation. The dynamics of the chain is described by a system of two discrete nonlinear Schr\"{o}dinger (DNLS) equations for local amplitudes of the probabilities of the ground and first excited states. The two equations are coupled by a cross-phase-modulation cubic terms, produced by the local-field action, and by linear terms too. In comparison with previously studied DNLS systems, an essentially new feature is a phase shift between the intersite-hopping constants in the two equations. By means of numerical solutions, we demonstrate that, in this QD chain, Rabi oscillations (RO) self-trap into stable bright\textit{\ Rabi solitons} or \textit{Rabi breathers}. Mobility of the solitons is considered too. The related behavior of observable quantities, such as energy, inversion, and electric-current density, is given a physical interpretation. The results apply to a realistic region of physical parameters.Comment: 12 pages, 10 figures, Phys. Rev. B, in pres

    Transition to miscibility in linearly coupled binary dipolar Bose-Einstein condensates

    Full text link
    We investigate effects of dipole-dipole (DD) interactions on immiscibility-miscibility transitions (IMTs) in two-component Bose-Einstein condensates (BECs) trapped in the harmonic-oscillator (HO) potential, with the components linearly coupled by a resonant electromagnetic field (accordingly, the components represent two different spin states of the same atom). The problem is studied by means of direct numerical simulations. Different mutual orientations of the dipolar moments in the two components are considered. It is shown that, in the binary BEC formed by dipoles with the same orientation and equal magnitudes, the IMT cannot be induced by the DD interaction alone, being possible only in the presence of the linear coupling between the components, while the miscibility threshold is affected by the DD interactions. However, in the binary condensate with the two dipolar components polarized in opposite directions, the IMT can be induced \emph{without} any linear coupling. Further, we demonstrate that those miscible and immiscible localized states, formed in the presence of the DD interactions, which are unstable evolve into robust breathers, which tend to keep the original miscibility or immiscibility, respectively. An exception is the case of a very strong DD attraction, when narrow stationary modes are destroyed by the instability. The binary BEC composed of co-polarized dipoles with different magnitudes are briefly considered too.Comment: 10 figure

    Composite localized modes in discretized spin-orbit-coupled Bose-Einstein condensates

    Get PDF
    We introduce a discrete model for binary spin-orbit-coupled (SOC) Bose-Einstein condensates (BEC) trapped in a deep one-dimensional optical lattice. Two different types of the couplings are considered, with spatial derivatives acting inside each species, or between the species. The discrete system with inter-site couplings dominated by the SOC, while the usual hopping is negligible, \textit{emulates} condensates composed of extremely heavy atoms, as well as those with opposite signs of the effective atomic masses in the two components.\ Stable localized composite states of miscible and immiscible types are constructed. The effect of the SOC on the immiscibility-miscibility transition in the localized complexes, which emulates the phase transition between insulating and conducting states in semiconductors, is studied.Comment: Journal of Physics B , in pres

    Stable optical vortices in nonlinear multicore fibers

    Get PDF
    The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF
    corecore