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Stable optical vortices in nonlinear multicore fibers

Ljupčo Hadžievski1, Aleksandra Maluckov1, Alexander M. Rubenchik2 and Sergei Turitsyn3,4

The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support

discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic

communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions

of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found

stable discrete vortices that were capable of transferring high coherent power through the MCF.
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INTRODUCTION

Vortex structures are widespread in nature and are found in both mac-

roscopic atmospheric phenomena, such as tornadoes and the Great Red

Spot of Jupiter, and microscopic-scale objects in quantum physics.

Mathematically, vortices are related to topological defects, the accu-

mulation of geometrical phases, and the phase singularity of a complex

linear or nonlinear field (see, e.g., Refs. 1–8 and references therein).

Optical vortices present a fascinating and expanding area of research

that combines fundamental theoretical and mathematical science and

maturing applied technologies (see recent review4). Optical vortices are

characterized by a wave field with zero intensity, an undefined phase in

the vortex center (pivot point) and the presence of a screw dislocation of

the wave front5,6. All transmutations of vortices in linear and nonlinear

fields obey the conservation of the topological charge S, which is defined

as the total change of the phase along a closed curve surrounding the

pivotal point of the vortex divided by 2p. The special behavior of the

phase and amplitude near the vortex pivot point results in the circular

flow of energy in optical vortices7–10. This property is closely related to

the ability of optical vortices to carry orbital angular momentum and

energy11–14. This property is interesting for various applications, such

as in optical traps15–17, information transmission18–20, astrophysics21,22,

microscopy23,24, and laser micromachining25,26.

In nonlinear media, optical vortices are treated as (topological)

vortex solitons4,27,28. Such topologically stable pulses can act as

information carriers4,29–31. It is important that continuum vortex

solitons are highly sensitive to azimuthal instability. Stabilization is

possible by applying optically induced photonic lattices, which lead to

a discrete optical vortex field. Different types of discrete lattice vortex

solitons were theoretically predicted in the Refs. 32–35 and experi-

mentally demonstrated in the Refs. 36,37. Discrete vortex solitons can

also be created in photonic crystal fibers and other types of photonic

lattices38,39. Discrete vortex solitons are frequently associated with

soliton clusters, which feature interesting mobility properties and

rotating propagation29–31,40–42. The existence and stability of multidi-

mensional spatiotemporal solitons (more precisely, solitary waves) in

different physical settings were theoretically analyzed in the Refs. 43,44.

The spatiotemporal optical solitons in fiber arrays were studied

in the Ref. 45, and the corresponding spatiotemporal optical vortices

were studied theoretically in the Refs. 46,47 and experimentally in the

Ref. 48.

Light vortices as carriers of orbital angular momentum can support

spatial-division multiplexing, which is an actively studied topic in

high-speed optical communications, given the increasing demand

for capacity in global communications systems. Multimode49 or mul-

ticore fibers (MCFs)50–52 may be used for such spatial-division multi-

plexing. Recently, the nonlinear effects in MCF were examined in the

Refs. 53,54, and the results indicated fascinating new features (com-

pared with both infinite photonic lattices and single core fibers).

Mathematical models of MCFs are based on the nonlinear

Schrödinger equation4,53,54 or the nonlinear complex Ginzburg-

Landau equation27,28,55,56. The latter model describes an active MCF

media with loss and gain effects included during light propagation.

In this study, we present nonlinear wave solutions in the form of

discrete optical vortices that demonstrate stable coherent propaga-

tion in MCF structures, as shown in Figure 1, which is modeled

using the discrete nonlinear Schrödinger equation53,54. Compared

with the uniform 2D rectangular and triangular lattices, this MCF

structure possesses different symmetry and has a reduced degree of

freedom imposed by the geometrical constrains on the coupling

between the waveguides, which affects the properties of the vortex

structures. Through analytical and numerical analysis, we present

the results on the existence, stability, and dynamic properties of

such structures. We demonstrate the remarkable features of the

vortices with some phase profiles and define the number of peri-

pheral cores to enable coherent transmission of high optical power

that is limited only by the applicability of the model. This property
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is of particular interest for designing new types of switches, sources

of high brightness, coherent radiation or uniform light sources

using tailored phase profiles.

MATERIALS AND METHODS

The master model of practical MCFs (Figure 1) is derived starting

from the Helmholtz equation57 and is based on a low-dimensional

version of the discrete nonlinear Schrödinger equation in a weak

coupling approximation, for which only the interaction between

neighboring cores is important53.

i dA0

dz
zb0A0z

PM

m~1

C0,mAmz2c0jA0j2A0~0

i dAm

dz
zbmAmzC0,mA0zCm,mz1Amz1zCm,m{1Am{1

z2cmjAmj2Am~0, m~1, . . . , M

ð1Þ

In the MCF model Equation (1), Am is the complex amplitude of the

optical field in the mth periphery core, M is the number of periphery

cores, A0 is the corresponding amplitude in the central core and bm

and b0 denote propagation constants of the optical fields in the peri-

phery and central cores, respectively. We consider the MCF both

without (Figure 1, left) (in this case A0 5 0 always) and with

(Figure 1, right) a central core. The periphery cores are assumed to

be identical to ensure that the propagation constants are equal, bm 5

b1, the coupling coefficients are equal, Cm,m – 1 5 Cm,m 1 1 5 C1, and

the nonlinearity parameters cm 5 c1 for all m 5 1, …, M. The corres-

ponding quantities for the central core are b0, C0,m 5 C0, m 5 1, …, M,

c0 and differ from these quantities on the periphery. Therefore,

Equation (1) can be rewritten in the following form:

i dA0

dz
zb0A0zC0

PM

m~1

Amz2c0jA0j2A0~0

i dAm

dz
zb1AmzC0A0zC1(Amz1zAm{1)z2c1jAmj2Am~0,

m~1, . . . , M

ð2Þ

We present dynamically stable vortices with topological charge S 5

1, 2, 3, 4 in a nonlinear MCF system with a small number of periphery

cores, M 5 3, 4, …, 17.

The form of stationary discrete vortices characterized by the topo-

logical charge S is defined by the following:

A0~0, Am~A exp (i2pSm=M) exp ({imz), m~1, . . . , M ð3Þ

where m is the propagation constant of the vortex solution. Note that
XM

m~1

exp i 2pS m=Mð Þ~0 for any integer S.

The system supports vortex solutions with topological charge S and

amplitude

a~
2pS

M
, A2~{

mzb1z2C1 cos (a)

2c1

ð4Þ

in the region of parameters derived from the condition A2 . 0, namely,

mv{b1{2C1 cos að Þ. In contrast to the linear case, mlin~

{b1{2C1 cos að Þ, in which the amplitude is arbitrary and does not

affect the properties of the linear vortices, in the nonlinear case, the

vortex properties are power dependent. The most important feature is

that the phase matching condition required for coherent propagation

in multiple cores depends on the power. Finally, although S/M is a

rationale number in general, note that in the cases for which S/M 5 n

(where n is an integer) and S/M 5 1/2, the phase increments (a) are

multiplies of 2p or p, and the vortex amplitudes are purely real.

By varying the values of an integer parameter S and the number of

periphery cores M, we analytically derived and numerically verified the

parameter ranges in which stable vortices can propagate. The steady-state

vortices were found numerically through the use of a nonlinear equation

solver based on the Powell method58, whereas the vortex propagation was

simulated using a sixth-order Runge-Kutta numerical procedure.

The two conserved quantities characterize the light propagation

through the MCF system described with model Equation (2), and

the quantities are the norm (total power) P and the Hamiltonian H:

P~ A0j j2z
XM

m~1

Amj j2

H~
XM

m~1

{b1 Amj j2{C1 Amz1A�mzA�mz1Am

� ��

{c1 Amj j4{C0 A01A�mzA�0Am

� �
{b0 A0j j2{c0 A0j j4

�

ð5Þ

Now, we perform a linear stability analysis both analytically and

numerically. By considering small perturbations on the background of

the vortex solutions in Equation (2) given by

Am~(AzdAm)ei 2pS
M

me{imz , m~1, . . . , M ;

dA0~(0zdA0)e{imz ,

and after linearization, we obtain the following eigenvalue problem:

i
LdA0

Lz
z(mzb0)dA0zC0

XM

m~1

dAmeiam~0

i
LdAm

Lz
z(mzb1)dAmzC0dA0e{iam

zC1(dAmz1eiazdAm{1e{ia)z2c1A2(2dAmzdA�m)~0

ð6Þ

Figure 1 Schematic of the MCF.
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Equation (6) and the corresponding complex conjugate can be

written in matrix form:

LdA
Lz

~iM̂dA ð7Þ

where dA is a column matrix of small perturbations,

dA~jdA0,dA1 ::: dAM ,dA�0,dA�1 ::: dA�M j
T

, and M̂ is the correspond-

ing eigenvalue 2N 3 2N matrix, where N is the total number of cores in

the MCF system; N 5 M or N 5 M 1 1 in the case without or with a

central core characterized by 2N eigenvalues, respectively. In general,

the matrix M̂ is non-Hermitian, and the type of eigenvalues (real –

stability, pure imaginary – exponential instability or complex – oscil-

latory instability) depends on the values of the matrix elements and,

consequently, on the parameters (b0,c0,b1,c1,A,S,M). The eigenvalue

problem is solved numerically, and the corresponding results are sub-

sequently presented. The evolution of the stable and unstable vortices

is obtained through direct numerical simulations of the dynamic

Equation (2).

RESULTS AND DISCUSSION

Two cases exist in which the eigenvalue problem can be solved ana-

lytically: (a) linear vortices and (b) nonlinear MCF without a central

core. In both cases, all eigenvalues and eigenfunctions of the system are

calculated explicitly. In the linear system, M̂ is Hermitian and, conse-

quently, possesses only real eigenvalues both with and without a cent-

ral core. In the case of a nonlinear vortex in MCF without a central

core, the cumbersome but straightforward calculations lead to the

following stability conditions.

The sufficient stability condition I when cos(a)ƒ0 is

A2
§

C1

2c1

cos (a)½1{ cos (2pj=M)�; 4pz1

4
ƒ

S

M
ƒ

4pz3

4
ð8Þ

where index j denotes different eigenvalues (j 5 0, …, M – 1), and p is

an integer. This equation gives the following sets of stable vortices with

unlimited power: for S 5 1, stable M 5 3, 4; for S 5 2, stable M 5 3, 4,

5, 6, 7, 8; for S 5 3, stable M 5 4, 5, 6, 7, 8, 9, 10, 11, 12; for S 5 4, stable

M 5 3, 6, 7, …, 16, and so on.

The sufficient stability condition II when cos (a)§0 is

A2
ƒ

C1

2c1

cos (a)½1{ cos (2p j=M)�; 4p{1

4
ƒ

S

M
ƒ

4pz1

4
ð9Þ

This equation gives the following sets of stable vortices in the low

power region: for S 5 1, stable M 5 5, 6, 7,…; for S 5 2, stable

M 5 9, 10,…; for S 5 3, stable M 5 3, 13, 14,…; for S 5 4, stable

M 5 4, 5, 17, 18,…; and so on.

The numerical modeling demonstrates excellent agreement with the

analytical results. Figure 2 summarizes the results of the linear stability

analysis for the MCF with and without the central core. Without a loss

of generality, we consider b0 5 b1 5 1 and c0 5 c1 5 1.

The general conclusion is that the MCF without a central core can

support stable propagation of the discrete vortices with unlimited

power for some values of parameters S and M. The obtained results

are consistent with the findings in the Refs. 34,35, which predicted

stable propagation of vortex structures with S 5 1 and 2 in different

two-dimensional lattice configurations. The presence of the central
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Figure 2 Schematic of the stability regions for vortices with topological charge S 5 1 (a), S 5 2 (b), S 5 3 (c), and S 5 4 (d) with respect to the number of cores in the

MCF system. The green and blue bars in the plots denote the parameter areas with stable vortices in the MCF with and without a central core, respectively.
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core enables the coupling of the perturbations in the periphery cores,

and the interactions of the cores produce instability. The result is the

creation of an instability window for some intermediate vortex

powers, but there is no effect on stability at high powers.

The vortices with S 5 1 and a small number of periphery cores,

M 5 3 and M 5 4, are stable in the entire existence region (see

Figure 2a). An important feature of the stable vortices is that vortex

power is not bounded from above. The corresponding phase differences

between neighboring periphery cores are a 5 2p/3 and 2p/2, respect-

ively. By increasing the number of periphery cores, M, the stability

region of the vortices shrinks toward the low power vortices with P ,

5. The presence of the central core for M 5 3 opens the instability

window 0 , P , 7.6, which does not affect the stability at high powers.

For S 5 2, the stable vortices are for M 5 3, …, 8, as observed in

Figure 2b. The addition of a new periphery core destabilizes the vortices

and produces instability windows for M 5 3, 4, 5, 6. However, the

vortices for M 5 7 and M 5 8 remain stable in the entire existence region.

In the stability window for S 5 3, vortices covers the existence

region for the vortex in the MCF with M 5 4 characterized by the

phase difference between neighboring periphery cores 3p/2, as

observed in Figure 2c. By adding a new core in the periphery, the

instability island appears and survives up to M 5 9 after which the

island disappears; similarly, for M 5 10, 11, 12, the stability and

existence region overlap. These vortices are characterized by the phase

3p/5, 6p/11, and p/2, respectively. The possibility of transferring high

energy by S 5 3 vortices in the certain parameter range is confirmed.

The phase change between adjacent cores given by 2pS/M 5 8p/M

for the S 5 4 vortices is shown to stabilize the vortices in the MCF with

6 ƒ M ƒ 16, as observed in Figure 2d. Actually, the total overlap

between the existence and stability region is found for M 5 13 to M 5

16 with the phase difference between neighboring periphery cores 8p/

13, 4p/7, 8p/15, p/2, whereas for M 5 6 to M 5 12, the narrow

instability island (also found for S 5 3) exists. Above the critical value

of M 5 16, the vortices with S 5 4 are unstable.

The eigenvalue spectrum of the vortices with an even number of cores

contains complex eigenvalues with finite real parts, which determine

the oscillatory instability of the vortex. Vortices with an odd number of

cores possess both purely real and complex eigenvalues with finite real

parts in the eigenvalue spectrum. In this spectrum, the development of

instability is controlled by the eigenvalue with the greatest real part. All

of these findings are based on the analytically and numerically

developed linear stability analysis and are confirmed through dynamic

analysis performed using direct numerical simulation of the model

equations.

Figures 3 and 4 illustrate examples of the evolution of stable and

unstable vortices obtained through direct numerical simulations. The

developing instability is followed by the active inclusion of the central

core in the energy redistribution of the system and the destruction of the

vortex phase pattern. This phenomenon is shown in Figure 3 by com-

paring the phase diagrams of the central and periphery cores for the

stable and unstable vortices with S 5 2 and M 5 4. The energy redis-

tribution between the periphery and the central core is related to the

destruction of the limit circle in the periphery core phase plot (Re(Aj) vs.

Im(Aj), j 5 1, …, M). As a consequence of the instability, the vortex

structure evolves into a breathing mode with a more complex internal

structure. Figure 3e and h illustrates this statement by increasing the

complexity of the amplitude spectra in the case of the unstable vortex.

The figures also indicate that the energy redistribution during the pro-

pagation of the unstable vortex is associated with decoherence in the

MCF system, as Figure 4 schematically illustrates. A detailed considera-

tion of the developing vortex instability is outside the primary scope of

this study, which is focused on preserving stable coherent energy trans-

mission through the MCF using vortex structures.

In particular, our results indicate the possibility of the stable and

coherent propagation of vortices with high power for a certain relation

between the topological charge, S, and the number of periphery cores,

M. The existence of vortex and stability regions overlap near the para-

meter ratio S/M 5 1/4 for all vortex types. The presence of the central
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core (both linear and nonlinear) supports the development of instab-

ility and brings a new degree of freedom to the system. This new degree

of freedom acts as an energy channel that provides for the energy

exchange in the system that destabilizes the vortex structure. Only

vortices with a particular phase ratio remain robust and maintain an

unchanged energy distribution among the periphery cores. The most

significant finding is the possibility of a stable and coherent transfer of

high energy through the nonlinear MCF. Direct numerical simula-

tions demonstrate that stable vortices remain robust and preserve

coherence when subject to small amplitude and phase perturbations

and small variations of the coupling constants.

CONCLUSIONS

In conclusion, we examined the formation, stability, and dynamical

properties of the discrete vortex structures in interacting nonlinear

MCF systems with one central and several periphery cores. Although

nonlinearity generally tends to destabilize vortices, the coherent pro-

pagation of steady nonlinear vortices with high power is possible in a

certain region of the parameter space. The most robust nonlinear

vortices are observed for S 5 1 and M 5 4, which corresponds to a

phase difference between neighboring periphery cores of a 5 p/2. The

presence of a central core provides greater possibilities for instability to

develop, which results in the creation of instability windows for certain

intermediate vortex powers but does not affect the stability at high

powers. The demonstrated remarkable feature of the stable vortex

propagation carrying high optical power and preserving the orbital

angular momentum has significant potential for many applications.

These results can be used to develop a new model of orbital angular

momentum multiplexing and high capacity transmission lines using

MCF. The considered discrete optical vortices also have the potential

for high power field trapping and transfer in MCF, which provides a

method to manage and control the nonlinearity and to design new

type of switches59, sources of high brightness coherent radiation or

uniform light sources with tailored phase profiles. Moreover, an intri-

guing extension of this work is to generate and manage spatiotemporal

vortex light bullets in MCF settings46–49.
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