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We study the influence of mean field cubic nonlinearity on Aharonov-Bohm caging in a diamond
lattice with synthetic magnetic flux. For sufficiently weak nonlinearities the Aharonov-Bohm caging
persists as periodic nonlinear breathing dynamics. Above a critical nonlinearity, symmetry breaking
induces a sharp transition in the dynamics and enables stronger wavepacket spreading. This tran-
sition is distinct from other flatband networks, where continuous spreading is induced by effective
nonlinear hopping or resonances with delocalized modes, and is in contrast to the quantum limit,
where two-particle hopping enables arbitrarily large spreading. This nonlinear symmetry breaking
transition is readily observable in femtosecond laser-written waveguide arrays.

Introduction. Perfect wave localization emerges in cer-
tain non-interacting tight binding networks via applica-
tion of a fine-tuned magnetic flux [1, 2]. The localiza-
tion mechanism in such “Aharonov-Bohm (AB) cages” is
the flux-controlled destructive interference between dif-
ferent propagation paths [3, 4], which are recombined and
forced to interfere at bottlenecks in the network. What
is perhaps most interesting about AB caging is that this
perfect localization is not limited to excitations at a pre-
cise energy (i.e. of a flat Bloch band); it persists for arbi-
trary initial states. This requires not just fine-tuning, but
also a network topology supporting closed flux-encircling
plaquettes, leading to novel topological invariants and
edge states [5–7].

First observed in a two-dimensional “dice” supercon-
ducting network nearly 20 years ago [8], recent advances
in synthetic gauge field engineering have renewed interest
in AB caging in the context of quasi-1D and 2D meso-
scopic networks including quantum rings [9–11], Joseph-
son junction arrays [12–16], optical lattices [17, 18], and
coupled optical waveguides [7, 19–21], motivated by the
goal of enhancing interaction effects. In particular, sin-
gle particle (non-interacting) eigenstates in AB cages are
compactly localized but non-orthogonal, such that in-
teractions induce two-particle hopping processes. This
destroys the caging, leading to delocalized bound pairs,
novel strongly correlated quantum phases such as 4e su-
perconductivity, and time-reversal symmetry breaking
ground states [22–31].

Here we study AB caging in the presence of mean
field interactions described by the discrete nonlinear
Schrödinger equation, relevant to Bose-Einstein conden-
sates [32] and high power light propagation in optical
waveguide arrays [33], where AB caging was very re-
cently observed [7, 21]. Due to non-orthogonality of
the compact localized eigenstates (CLS), weak nonlin-
earities are already sufficient to induce linear instabil-
ities via coupling between neighbouring CLS [34]. We
demonstrate through numerical simulations that these

instabilities are weak in the sense that the dynamics re-
main (quasi-)periodic and spreading to more distant lat-
tice sites remains negligible; most of the power remains
confined to the initially-excited CLS as a stable breath-
ing mode. At a critical nonlinearity strength we observe a
sharp transition in the dynamics at which this breather
becomes unstable due to nonlinear symmetry breaking
between the two legs of each plaquette. Leg-dependent
nonlinear phase shifts can then break the AB cage, lead-
ing to delocalization beyond that allowed within the lin-
ear stability analysis (LSA). Interestingly, this transition
is not specific to the AB cage limit, but is also robust
to detunings of the effective flux, suggesting it is rooted
in the presence of bottlenecks. This nonlinearity-induced
transition may be useful for nonlinear switching function-
alities, and is distinctly different from the quantum limit
in which two particles already delocalize under weak in-
teractions.
Model. We consider light propagation in the quasi-

1D diamond chain lattice with synthetically introduced
magnetic flux. The diamond lattice has bipartite sym-
metry [35] with three sites per unit cell: A,B and C as
shown in Fig. 1(a). The A sites are fourfold connected
with the nearest neighbors, forming bottlenecks, while B
and C sites make twofold connections with surrounding
sites. Evolution of the optical field ψn = (an, bn, cn) in
the presence of on-site nonlinearity is governed by the
discrete nonlinear Schrödinger equation,

i∂zan = bne
−iΓ/2 + bn−1 + cn + cn−1e

−iΓ/2 − g|an|
2an,

i∂zbn = ane
iΓ/2 + an+1 − g|bn|

2bn,

i∂zcn = an + an+1e
iΓ/2 − g|cn|

2cn. (1)

Here z is the propagation distance, g is the nonlinearity
strength, Γ is the flux [20, 24], n is the unit cell index, and
we have normalized the coupling to unity without loss of
generality. Experimentally, the flux Γ can be realized
either through sinusoidal modulation of refractive index
of waveguides along z direction or by implementation of
an auxiliary waveguide with carefully chosen refractive
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FIG. 1: (a) Schematic representation of diamond lattice (char-
acterized by bipartite symmetry) made of coupled optical
waveguides. A synthetic magnetic flux Γ is applied in each
plaquette. (b) Band structure for: Γ = 0, 2π (dotted orange
line), Γ = 3π/4 (dashed turquoise line) and Γ = π (blue solid
lines). (c-e) Geometry-induced βFB = 0 flatband modes for
different flux strengths (c,d) and additional flatband modes
(βFB = ±2) originating due to the AB caging (e).

index in between two sites [7, 20, 21]. Total beam power
P =

∑

n(|an|
2 + |bn|

2 + |cn|
2) and the Hamiltonian are

conserved quantities.
In the linear limit (g = 0), the Bloch wave eigenmodes

are {an, bn, cn} = (A,B,C) exp(−iβz + ikn), where β
and k denote the propagation constant and Bloch wave
number respectively. After its substitution into Eq. (1)
we obtain the following dispersion relations:

βFB = 0, β± = ±2κ
√

1 + cos(Γ/2) cos(k − Γ/2).

The βFB = 0 band is completely flat, regardless of the
flux Γ, and is a consequence of the diamond network’s
topology (plaquettes coupled via bottleneck sites). The
other bands are in general k dependent, and only become
flat in the AB cage limit Γ = π.
When Γ = 0 or 2π the flatband touches two surround-

ing dispersive bands at the Brillouin zone edge, as shown
in Fig. 1(b). Fig. 1(c) illustrates the fundamental CLS,
which occupies two sites and is localized to a singe unit
cell. In general, when Γ 6= 0, 2π the βFB = 0 flatband
is separated from the others by a gap, and the funda-
mental CLS occupying four sites is not orthogonal with
neighboring CLSs, see Fig. 1(d) [36]. Meanwhile, in the
AB cage limit the additional flatbands at β = ±2κ host
five-site CLS that also excite one of the bottleneck sites
[Fig. 1(e)].
Linear stability of nonlinear CLS. We start by analyz-

FIG. 2: Linear instability spectrum of nonlinear CLS. (a,b)
Positive frequency part of full linear perturbation eigenvalue
(EV) spectrum for (a) Γ = 3π/4 and (b) Γ = π. Pure real
EVs (cyan) and nonzero real parts of complex EVs (blue)
mark regions of CLS linear instability. Pure imaginary EVs
and imaginary parts of complex EVs are shown in orange and
green, respectively. (c) Characteristic eigenmode profiles of
perturbed CLS corresponding to three EV branches (1), (2)
and (3) from (b). Size of the system is N = 21.

ing how nonlinearity can lead to instability of the CLS,
and potentially induce transport. Our focus is on the
βFB = 0 CLS, which exists and can be continued as a
nonlinear CLS regardless of the synthetic magnetic flux
strength. The general behaviour of perturbed CLSs can
be related to the eigenvalue (EV) spectra which are ob-
tained via the linear stability analysis (LSA) by applying
a small perturbation pn to the CLS profile ψn and lin-
earizing the equations of motion Eq. (1) [34, 37]. The
eigenvalues λ of the linearized equations of motion char-
acterize the initial stage of instability development of
CLS.
When Γ 6= 0, 2π, nonlinearity can induce coupling be-

tween neighboring non-orthogonal CLSs. This can be
identified in LSA spectrum via pure real EVs (exponen-
tial instabilities) in Fig. 2. The perturbation eigenmodes
are compact and have vanishing tails in the AB cage limit
(Γ = π), and are localized with exponential tails for other
values of Γ. This source of instability only induces signif-
icant coupling between the very first neighboring CLSs
originating from the same submanifold (same flatband).
It cannot induce longer range spreading.
Typical spectrum of perturbed CLSs emerging from

single gapped flatband located at βFB = 0 is depicted in
Fig. 2(a) for the case Γ = 3π/4. Even for small nonlinear-
ity strengths g, the pure real EV branch is accompanied
by quartets of complex EVs with nonzero real parts, in-
dicating oscillatory instabilities arising due to coupling
between the dispersive bands and the CLS. Since the
dispersive states are delocalized, this mixing can induce
spreading of energy through the entire lattice [34]. Sim-
ilar scenario is obtained for Γ = 0, 2π.
On the other hand, for Γ = π the pure real EV

branches simultaneously occur with the complex EVs
quartets coming from the flatbands characterized with
βFB = ±2 [Fig. 2(b)], whose eigenmodes are also com-
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FIG. 3: Nonlinear delocalization and symmetry-breaking of
the CLS. (a-c) Intensity profiles In = |an|

2 + |bn|
2 + |cn|

2 at
z = 10π for: Γ = 0 (a), Γ = 3π/4 (b) and Γ = π (c). Cases
when g = 0.5 and g = 1 are depicted with blue circle and
red square symbol lines, respectively. Vertical dashed yellow
lines mark the cell position of the input CLS. (d) Spreading of
the CLS measured via the maximal value of the participation
ratio R within the propagation length z = 10π. (e) z-average
of the normalized leg imbalance η.

pact and localized. The corresponding instability eigen-
modes share this compact localization, but occupy more
sites than the nonlinear CLS, as shown in Fig. 2(c). Now,
the complex EV branches can be associated with oscil-
latory instabilities developed due to the mutual interac-
tions among CLS components arising from different flat-
bands. Such oscillations involving multiple CLS are also
observable in the linear case (see single “B” site excita-
tion in Ref. [7]) and are specific to AB cages.
Propagation dynamics and symmetry breaking. Above

LSA describes the initial dynamics of a perturbed CLS,
assuming all other modes remain weakly excited. This
assumption is typically satisfied for resonant interactions
between nonlinear localized modes and continua of low
amplitude dispersive waves, because the latter propagate
away from the localized mode, stop interacting with it,
and thereby preserve their low amplitude. This argument
fails for AB cages because all low amplitude modes are
strictly localized; if linear instabilities exist, the unstable
mode amplitudes will grow exponentially until nonlin-
ear corrections become important. What then happens?
This question cannot be resolved by the LSA and must
be tackled using numerical simulations of the propaga-
tion dynamics.
Our central result, based on direct simulations of

Eq. (1) taking CLS with random weak (5%) perturba-

FIG. 4: Periodic dynamics of Γ = π compact breathing modes
in the weak instability regime g = 0.5. (a-c) Evolution of
compact breathing modes when initial excitation condition
is: (a) CLS from βFB = 0 submanifold, (b) single B site
and (c) single A site. Dashed purple lines mark edges of
central unit cell, while yellow circles on the left denote excited
sites at z = 0. All plots contain same number of cells. (d-f)
Power spectra of the breathers in (a-c) obtained from Fourier
transform of the site intensities |an(z)|

2 (red) and |bn(a)|
2

(blue) in the central unit cell.

tions as the initial condition, is that the critical value
g = 1 represents a bifurcation point, beyond which non-
linear symmetry breaking of CLS occurs. This particular
value of nonlinear parameter g separates a weak instabil-
ity regime from a strong instability regime, regardless of
the value of the synthetic magnetic flux Γ, illustrated
by the examples in Fig. 3(a,b,c). For even larger values
of g (in the regions where LSA indicates stability), we
observe a second transition to conventional self-trapping
behaviour for all values of Γ.

To characterize the transition at g = 1, we compute
the normalized leg imbalance η =

∑

n(|bn|
2 − |cn|

2)/P
and the participation ratio R = P 2/

∑

n(|an|
4 + |bn|

4 +
|cn|

4). The former vanishes for all single band excita-
tions; nonzero values indicate significant nonlinear inter-
band coupling, enabling intensity-dependent phase shifts
that break the AB cage by spoiling the destructive inter-
ference at the bottleneck sites. The participation ratio
measures the number of sites occupied by the field, quan-
tifying the wavepacket spreading.

As long as g < 1, the initially perturbed CLS evolves
into a periodic breather, symmetric with respect to the
A site and keeping almost of all of the total power
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FIG. 5: Dynamics in the strong instability regime g = 1.9
for the three different excitation conditions of Fig. 4. (a-c)
z evolution exhibiting emergence of symmetry-broken profiles
for the CLS and B excitations (a,b), while the A excitation
remains symmetric. (d-f) Corresponding power spectra of the
intensities in the central unit cell.

within the initially-excited nonlinear mode. Moreover,
the dynamics are confined to the symmetric subspace,
i.e. |bn| ≈ |cn| for all z. Figs. 3(d,e) show sudden in-
creases of R and η occur at the bifurcation point g = 1.
In this strong instability regime, the breather loses stabil-
ity and spreading becomes significant (red symbol lines
in Figs. 3(a-c)). Although not affecting the precise bi-
furcation point, AB caging has an impact on R, which
is smaller compared to the non-AB cage networks with
Γ 6= π due to the absence of delocalized linear modes.

This transition is not specific to the nonlinear CLS. We
observe numerically similar nonlinear transitions for sin-
gle site excitations in the AB cage limit Γ = π. Fig. 4(a-
c) shows representative examples of the weak instability
regime for the CLS as well as B and A single site excita-
tions, revealing formation of periodic breathers. The cor-
responding power spectra in Fig. 4(d-f) have sharp peaks
corresponding the energy difference between the flat-
bands. In particular, the single A site excitation corre-
sponds to a superposition of eigenmodes of the β± = ±2κ
bands generating the breather oscillation frequency ω = 4
(Fig. 4(f)); there is no coupling into the βFB = 0 flat-
band and the symmetry between the two legs η ≈ 0 is
preserved.

In the strong instability regime, a significant fraction
of the power is coupled into other modes and the dy-
namics become aperiodic for the CLS and B site excita-

tions, as shown in Fig. 5(a,b,d,e). On the other hand,
for 1 < g < 2 the A site excitation forms a different kind
of five-site breather, with intensity oscillation frequency
ω ≈ 3.89 independent of g. For g ≥ 2 the system enters
the self-trapping regime, with energy becoming pinned at
the initially-excited site. Therefore, an excitation of bot-
tleneck sites remains symmetric regardless of the nonlin-
earity strength due to the onset of self-trapping, whereas
excitations of the legs can undergo the nonlinear symme-
try breaking.

Conclusion. The diamond network with properly
tuned synthetic magnetic flux supports light localization
analogous to AB caging in electronic systems. In the lin-
ear limit, destructive interference at bottleneck sites com-
pletely suppresses the spreading of localized excitations,
leading to the existence of compact localized eigenstates.
We showed that such eigenstates can persist as stable
periodic breathers for sufficiently weak nonlinearities, be-
fore undergoing a sudden symmetry-breaking transition
at a critical nonlinearity strength. This symmetry break-
ing enables strong spreading of energy to neighboring
cells, breaking the AB caging. We confirmed these state-
ments using linear stability analysis and direct beam
propagation simulations, observing that the symmetry-
breaking transition is not sensitive to the precise strength
of the effective magnetic flux. This transition occurring
at finite nonlinearity strength is notably distinct from
previous studies focusing on the quantum limit, where
all two-particle eigenstates become delocalised for arbi-
trarily weak interaction strengths.

Nonlinear breathers and symmetry breaking in AB
cages are readily observable in femtosecond laser-written
arrays similar to those in Refs. [7, 21]. Previous ex-
periments reported an effective nonlinear coefficient of
γ = 1.7 cm−1MW−1 with probe beam powers up to
P = 4 MW [33]. Meanwhile, the AB cage experiment
of Ref. [7] reported an effective coupling strength of
κ = 0.85 cm−1 with a propagation length L = 10 cm, cor-
responding to dimensionless propagation length κL = 8.5
with a normalized nonlinear coefficients g = Pγ/κ up
to 8, sufficient to observe the three nonlinear regimes of
weak instability, strong instability, and self-trapping. As
the underlying mechanisms are general, relying only on
the interplay between magnetic flux and nonlinear phase
shifts at bottlenecks in the AB cage network, we antici-
pate it can be generalized to two-dimensional AB cage
structures such as the dice lattice [17, 25], and other
nonlinear platforms such as exciton-polariton conden-
sates [32].
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Szameit, and S. Nolte, Nonlinear discrete optics in fem-

tosecond laser-written photonic lattices, App. Phys. B
104, 469 (2011).

[34] C. Danieli, A. Maluckov, and S. Flach, Compact discrete

breathers on flat-band networks, J. Low Temp. Phys. 44,
678 (2018).

[35] E. H. Lieb, Two Theorems on the Hubbard Model, Phys.
Rev. Lett. 62, 1201 (1989).

http://arxiv.org/abs/1808.05926
http://arxiv.org/abs/1805.05209
http://arxiv.org/abs/1805.09359
http://arxiv.org/abs/1805.04529
http://arxiv.org/abs/1807.02583


6

[36] W. Maimaiti, A. Andreanov, H. C. Park, O. Gendelman,
S. Flach, Compact localized states and flat-band genera-

tors in one dimension Phys. Rev. B 95, 115135 (2017).
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