10 research outputs found

    SIR AUSTIN BRADFORD HILL

    Get PDF
    CD40L/interleukin-4 (IL-4) stimulation occurs in vivo in the tumor microenvironment and induces global translation to varying degrees in individuals with chronic lymphocytic leukemia (CLL) in vitro. However, the implications of CD40L/IL-4 for the translation of specific genes is not known. To determine the most highly translationally regulated genes in response to CD40L/IL-4, we carried out ribosome profiling, a next-generation sequencing method. Significant differences in the translational efficiency of DNA damage response genes, specifically ataxia‐telangiectasia–mutated kinase (ATM) and the MRE11/RAD50/NBN (MRN) complex, were observed between patients, suggesting different patterns of translational regulation. We confirmed associations between CD40L/IL-4 response and baseline ATM levels, induction of ATM, and phosphorylation of the ATM targets, p53 and H2AX. X-irradiation was used to demonstrate that CD40L/IL-4 stimulation tended to improve DNA damage repair. Baseline ATM levels, independent of the presence of 11q deletion, correlated with overall survival (OS). Overall, we suggest that there are individual differences in translation of specific genes, including ATM, in response to CD40L/IL-4 and that these interpatient differences might be clinically important

    ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance

    Get PDF
    Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance.SignificanceATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors

    Clonal architecture in mesothelioma is prognostic and shapes the tumour microenvironment.

    Get PDF
    Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition

    Targeting DNA damage deficient mesotheliomas via synthetic lethal disruption of DNA double-strand repair

    Full text link
    Given that there is still lack of effective targeted therapy against relapsed malignant pleural mesothelioma (MPM), long latency of this disease and asbestos being used in several non-European countries, the MPM will remain heath issue for decades to come. Therefore, it is a pressing need establish strategies that can avail underlying vulnerabilities to optimise treatments against relapsed MPM and improve patient outcomes. Due to the loss of DNA repair components of Homologous recombination repair (HRR) mesotheliomas rely on Poly (ADP-ribose) polymerase (PARP)-related single-strand break repair pathway. Mesotheliomas tend to harbour HRR deficiency, and thus provide a therapeutic avenue to eliminate malignant cells selectively. Consequently, to test the hypothesis that disruption of homologous recombination DNA repair pathway in malignant pleural mesotheliomas can be therapeutically explored via PARP inhibition (rucaparib) to induce synthetic lethality, we used in vitro, ex vivo and in vivo models. BAP1 is an HRR-associated protein. Approximately 60% of MPMs harbour BAP1 alteration, therefore in the view of the prominence of this tumour suppressor gene, BAP1 could be a potential predictive therapeutic biomarker. Indeed, BAP1 loss of function has been found to be common in the current study. However, it did not render sensitivity to rucaparib in MPM cell lines, explants, nor patients. Nevertheless, FAAP20 loss consistently appeared to correlate with sensitivity to rucaparib in our MPMs models. Moreover, our findings also suggest that platinumbased therapy could be potentially used as a predictor for rucaparib response in MPM patients.</p

    Precision Therapy for Mesothelioma: Feasibility and New Opportunities

    No full text
    Malignant pleural mesotheliomas (MPMs) are characterised by their wide variation in natural history, ranging from minimally to highly aggressive, associated with both interpatient and intra-tumour genomic heterogeneity. Recent insights into the nature of this genetic variation, the identification of drivers, and the emergence of novel strategies capable of targeting vulnerabilities that result from the inactivation of key tumour suppressors suggest that new approaches to molecularly strategy therapy for mesothelioma may be feasible

    Evaluating niraparib versus active symptom control in patients with previously treated mesothelioma (NERO): a study protocol for a multicentre, randomised, two-arm, open-label phase II trial in UK secondary care centres

    No full text
    Background: malignant mesothelioma is a rapidly lethal cancer that has been increasing at an epidemic rate over the last three decades. Targeted therapies for mesothelioma have been lacking. A previous study called MiST1 (NCT03654833), evaluated the efficacy of Poly (ADP-ribose) polymerase (PARP) inhibition in mesothelioma. This study met its primary endpoint with 15% of patients having durable responses exceeding 1 year. Therefore, there is a need to evaluate PARP inhibitors in relapsed mesothelioma patients, where options are limited. Niraparib is the PARP inhibitor used in NERO.Methods: NERO is a multicentre, two-arm, open-label UK randomised phase II trial designed to evaluate the efficacy of PARP inhibition in relapsed mesothelioma. 84 patients are being recruited. NERO is not restricted by line of therapy; however, eligible participants must have been treated with an approved platinum based systemic therapy. Participants will be randomised 2:1, stratified according to histology and response to prior platinum-based chemotherapy, to receive either active symptom control (ASC) and niraparib or ASC alone, for up to 24 weeks. Participants will be treated until disease progression, withdrawal, death or development of significant treatment limiting toxicity. Participants randomised to niraparib will receive 200 or 300 mg daily in a 3-weekly cycle. The primary endpoint is progression-free survival, where progression is determined by modified Response Evaluation Criteria in Solid Tumors (mRECIST) or RECIST 1.1; investigator reported progression; or death from any cause, whichever comes first. Secondary endpoints include overall survival, best overall response, 12-week and 24 week disease control, duration of response, treatment compliance and safety/tolerability. If NERO shows niraparib to be safe and biologically effective, it may lead to future late phase randomised controlled trials in relapsed mesothelioma Ethics and dissemination: the study received ethical approval from London-Hampstead Research Ethics Committee on 06-May-2022 (22/LO/0281). Data from all centres will be analysed together and published as soon as possible.Trial registration number: ISCRTN16171129; NCT05455424.</p

    ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance

    Get PDF
    Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. Significance: ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.</p

    Medical and Surgical Care of Patients With Mesothelioma and Their Relatives Carrying Germline BAP1 Mutations

    No full text
    The most common malignancies that develop in carriers of BAP1 germline mutations include diffuse malignant mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and less frequently, breast cancer, several types of skin carcinomas, and other tumor types. Mesotheliomas in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. Some BAP1 carriers have asymptomatic mesothelioma that can be followed by close clinical observation without apparent adverse outcomes: they may survive many years without therapy. Others may grow aggressively but very often respond to therapy. Detecting BAP1 germline mutations has, therefore, substantial medical, social, and economic impact. Close monitoring of these patients and their relatives is expected to result in prolonged life expectancy, improved quality of life, and being cost-effective. The co-authors of this paper are those who have published the vast majority of cases of mesothelioma occurring in patients carrying inactivating germline BAP1 mutations and who have studied the families affected by the BAP1 cancer syndrome for many years. This paper reports our experience. It is intended to be a source of information for all physicians who care for patients carrying germline BAP1 mutations. We discuss the clinical presentation, diagnostic and treatment challenges, and our recommendations of how to best care for these patients and their family members, including the potential economic and psychosocial impact.</p
    corecore