6,381 research outputs found

    Performance of the ATLAS Detector on First Single Beam and Cosmic Ray Data

    Get PDF
    We report on performance studies of the ATLAS detector obtained with first single LHC (Large Hadron Collider) beam data in September 2008, and large samples of cosmic ray events collected in the fall of 2008. In particular, the performance of the calorimeter, crucial for jet and missing transverse energy measurements, is studied. It is shown that the ATLAS experiment is ready to record the first LHC collisions.Comment: 4 pages, 6 figures, proceedings contribution of the SUSY 2009 conference in Bosto

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Competing SDW Phases and Quantum Oscillations in (TMTSF)2ClO4 in Magnetic Field

    Full text link
    We propose a new approach for studying spin density waves (SDW) in the Bechgaard salt (TMTSF)2ClO4 where lattice is dimerized in transverse direction due to anion ordering. The SDW response is calculated in the matrix formulation that rigorously treats the hybridization of inter-band and intra-band SDW correlations. Since the dimerization gap is large, of the order of transverse bandwidth, we also develop an exact treatment of magnetic breakdown in the external magnetic field. The obtained results agree with the experimental data on the fast magneto-resistance oscillations. Experimentally found 260T rapid oscillations and the characteristic Tc dependance on magnetic field of relaxed material are fitted with our results for anion potential of the order of interchain hopping

    Peierls-type structural phase transition in a crystal induced by magnetic breakdown

    Full text link
    We predict a new type of phase transition in a quasi-two dimensional system of electrons at high magnetic fields, namely the stabilization of a density wave which transforms a two dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. The quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps which decreases the total electron energy, thus leading to a magnetic breakdown induced density wave (MBIDW) ground state. We show that this DW instability has some qualitatively different properties in comparison to analogous DW instabilities of Peierls type. E. g. the critical temperature of the MBIDW phase transition arises and disappears in a peculiar way with a change of the inverse magnetic field

    Effects of transverse electron dispersion on photo-emission spectra of quasi-one-dimensional systems

    Full text link
    The random phase approximation (RPA) spectral function of the one-dimensional electron band with the three-dimensional long range Coulomb interaction shows a broad feature which is spread on the scale of the plasmon energy and vanishes at the chemical potential. The fact that there are no quasi-particle Ξ΄\delta-peaks is the direct consequence of the acoustic nature of the collective plasmon mode. This behaviour of the spectral function is in the qualitative agreement with the angle resolved photo-emission spectra of some Bechgaard salts. In the present work we consider the modifications in the spectral function due to finite transverse electron dispersion. The transverse bandwidth is responsible for the appearance of an optical gap in the long wavelength plasmon mode. The plasmon dispersion of such kind introduces the quasi-particle Ξ΄\delta-peak into the spectral function at the chemical potential. The cross-over from the Fermi liquid to the non-Fermi liquid regime by decreasing the transverse bandwidth takes place through the decrease of the quasi-particle weight as the optical gap in the long wavelength plasmon mode is closing.Comment: 2 pages, 2 figures, ISCOM'0

    Site So Specific

    Get PDF

    Prof. Dr. Nenad Keča (1975 - 2019)

    Get PDF

    The Role of Hydrophilic Sandblasted Titanium and Laser Microgrooved Zirconia Surfaces in Dental Implant Treatment

    Get PDF
    Dental implant surface modifications affect surface roughness, chemistry, topography, and consequently influence biological bone response. Current surface treatments are directed toward increased hydrophilicity and wettability of dental surfaces that allow earlier implant loading due to accelerated osseointegration. This is clinically reflected in increased implant stability and mainteined crestal bone level. Further modification includes microgrooving of zirconia implants by femtosecond laser ablation. Favorable initial results encourage further clinical assessment of this microgrooved zirconia implants

    ΠœΠΈΠΊΡ€ΠΎΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Π° Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΡ˜Π° ΠΊΠΎΡˆΡ‚Π°Π½ΠΎΠ³ Ρ‚ΠΊΠΈΠ²Π° Ρ„Π°Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ скСлСта Π½Π° Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Ρƒ ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½ΠΎΠ³ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ›Π΅ΡšΠ° ΠΊΠΎΠ΄ особа са ΠΏΡƒΠ½ΠΈΠΌ Π·ΡƒΠ±Π½ΠΈΠΌ Π½ΠΈΠ·ΠΎΠΌ ΠΈ њСна ΡƒΠ»ΠΎΠ³Π° Ρƒ настанку ΠΏΡ€Π΅Π»ΠΎΠΌΠ° Ρ„Π°Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ скСлСта

    Get PDF
    Occlusal forces have traditionally been explained to transfer through the facial skeleton along specific osseous trajectories known as buttresses. These regions were assumed as zones of strength due to their thick cortical bone structure, while the areas between the buttresses containing thin cortical bone were considered weak and fragile. However, recent studies revealed that both cortical and trabecular bone of the mid-facial skeleton of dentulous individuals exhibit remarkable regional variations in structure and elastic properties. These variations have been frequently suggested to result from the different involvement of cortical and trabecular bone in the transfer of occlusal forces, although there has been no study to link bone microarchitecture to the occlusal loading. Moreover, although the classical concept of buttresses has been extensively studied by mechanical methods, such as finite element (FE) analysis, there is still no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Additionally, relatively less scientific attention has been paid to the investigation of bone structure along Le Fort fracture lines that have traditionally been assumed as weak areas at which the mid-facial skeleton commonly fractures after injury. Papers published so far in this field focused mainly on the epidemiology and the role of injury mechanism in the fracture development, without considering the structural basis of increased bone fragility along the Le Fort fracture lines...ΠŸΡ€Π΅ΠΌΠ° Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ објашњeΡšΡƒ, прСнос ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½ΠΎΠ³ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ›Π΅ΡšΠ° ΠΊΡ€ΠΎΠ· кости Π»ΠΈΡ†Π° Ρ‚ΠΎΠΊΠΎΠΌ Твакања ΠΎΠ±Π°Π²Ρ™Π° сС Π΄ΡƒΠΆ спСцифичних ΠΏΡƒΡ‚Π°ΡšΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ кости Π·Π²Π°Π½ΠΈΡ… Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π΅ ΠΈΠ»ΠΈ β€žΠ±Π°Ρ‚Ρ€Π΅ΡΠΈβ€œ. Ови Π΄Π΅Π»ΠΎΠ²ΠΈ ΠΊΠΎΡΡ‚ΠΈΡ˜Ρƒ Π»ΠΈΡ†Π° сматрани су јаким Π·ΠΎΠ½Π°ΠΌΠ° Ρ˜Π΅Ρ€ ΠΈΡ… ΠΈΠ·Π³Ρ€Π°Ρ’ΡƒΡ˜Π΅ ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»Π½Π° кост Π²Π΅Π»ΠΈΠΊΠ΅ Π΄Π΅Π±Ρ™ΠΈΠ½Π΅, Π΄ΠΎΠΊ су Π΄Π΅Π»ΠΎΠ²ΠΈ кости ΡΠΌΠ΅ΡˆΡ‚Π΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π° сматрани слабим ΠΈ Ρ„Ρ€Π°Π³ΠΈΠ»Π½ΠΈΠΌ Π·Π±ΠΎΠ³ ΡšΠΈΡ…ΠΎΠ²Π΅ Ρ‚Π°Π½ΠΊΠ΅ ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»Π½Π΅ Π³Ρ€Π°Ρ’Π΅. ΠœΠ΅Ρ’ΡƒΡ‚ΠΈΠΌ, Π½Π΅Π΄Π°Π²Π½ΠΈΠΌ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠΈΠΌΠ° јС ΠΎΡ‚ΠΊΡ€ΠΈΠ²Π΅Π½ΠΎ Π΄Π° ΠΈ ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»Π½Π° ΠΈ Ρ‚Ρ€Π°Π±Π΅ΠΊΡƒΠ»Π°Ρ€Π½Π° кост ΡΡ€Π΅Π΄ΡšΠ΅Π³ масива Π»ΠΈΡ†Π° ΠΊΠΎΠ΄ особа са ΠΏΡƒΠ½ΠΈΠΌ Π·ΡƒΠ±Π½ΠΈΠΌ Π½ΠΈΠ·ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»Π½Π΅ Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ Ρƒ Π³Ρ€Π°Ρ’ΠΈ ΠΈ Сластичним ΡΠ²ΠΎΡ˜ΡΡ‚Π²ΠΈΠΌΠ°. ОвС сС Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ чСсто ΡΠΌΠ°Ρ‚Ρ€Π°Ρ˜Ρƒ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»Π½Π΅ ΠΈ Ρ‚Ρ€Π°Π±Π΅ΠΊΡƒΠ»Π°Ρ€Π½Π΅ кости Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΎ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ›Π΅ΡšΠ΅ Ρƒ прСносу ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½ΠΈΡ… сила Ρ‚ΠΎΠΊΠΎΠΌ Твакања, ΠΈΠ°ΠΊΠΎ повСзаност ΠΌΠΈΠΊΡ€ΠΎΠ°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ кости ΠΈ ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½ΠΎΠ³ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ›Π΅ΡšΠ° Π΄ΠΎ сада нијС испитивана ΠΊΠΎΠ΄ Ρ™ΡƒΠ΄ΠΈ. Π¨Ρ‚Π°Π²ΠΈΡˆΠ΅, ΠΈΠ°ΠΊΠΎ јС класични ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ прСноса ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½ΠΎΠ³ ΠΎΠΏΡ‚Π΅Ρ€Π΅Ρ›Π΅ΡšΠ° Π΄ΡƒΠΆ Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ јС ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠ½Π°Ρ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π°, још ΡƒΠ²Π΅ΠΊ нијС испитано Π½Π° који Π½Π°Ρ‡ΠΈΠ½ сС ΠΎΠΊΠ»ΡƒΠ·Π°Π»Π½Π΅ силС прСносС ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΎ ΠΊΡ€ΠΎΠ· ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»Π½Ρƒ ΠΈ Ρ‚Ρ€Π°Π±Π΅ΠΊΡƒΠ»Π°Ρ€Π½Ρƒ кост. Π—Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ ΠΌΠ°ΡšΡƒ Π½Π°ΡƒΡ‡Π½Ρƒ ΠΏΠ°ΠΆΡšΡƒ јС ΠΏΡ€ΠΈΠ²Π»Π°Ρ‡ΠΈΠ»ΠΎ ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ΅ Π³Ρ€Π°Ρ’Π΅ ΠΊΠΎΡΡ‚ΠΈΡ˜Ρƒ Π»ΠΈΡ†Π° Π΄ΡƒΠΆ Le Fort линија којС су Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΎ сматранС Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›ΠΈΠΌ мСстима ΠΏΡ€Π΅Π»ΠΎΠΌΠ° ΠΊΠΎΡΡ‚ΠΈΡ˜Ρƒ Ρ„Π°Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ скСлСта ΡƒΠ·Ρ€ΠΎΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠΈΠΌ силама. Π”ΠΎΡΠ°Π΄Π°ΡˆΡšΠ΅ ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π΅ Ρƒ овој области су Π±ΠΈΠ»Π΅ фокусиранС ΡƒΠ³Π»Π°Π²Π½ΠΎΠΌ Π½Π° СпидСмиолошка ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈ ΡƒΠ»ΠΎΠ³Ρƒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΠΎΠ²Ρ€Π΅Π΄Π΅ Ρƒ настанку ΠΎΠ²ΠΈΡ… ΠΏΡ€Π΅Π»ΠΎΠΌΠ°, Π΄ΠΎΠΊ структурна основа ΠΏΠΎΠ²Π΅Ρ›Π°Π½Π΅ фрагилности кости Π΄ΡƒΠΆ Le Fort линија нијС испитивана..
    • …
    corecore