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Domain patterns in incammensurate systems arith the uniaxial real order parameter
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The basic Landau model for the incommensurate-commensurate transition to the uniform or
dimerized uniaxial ordering is critically reexamined. The previous analyses identi6ed only sinusoidal
and homogeneous solutions as thermodynamically stable and proposed a simple phase diagram with
the 6rst-order phase transition between these con6gurations. By performing the numerical anal-
ysis of the &ee-energy and the Euler-Lagrange equation we show that the phase diagram is more
complex. It also contains a set of metastable solutions present in the range of coexistence of homo-
geneous and sinusoidal solutions. These new con6gurations are periodic patterns of homogeneous
domains connected by sinusoidal segments. They are Lyapunov unstable, very probably due to the
nonintegrability of the &ee-energy functional. We also discuss some other mathematical aspects of
the model and compare it with the essentially simpler sine-Gordon model for the transitions to the
states with higher co~~ensurabilities. We argue that the present results might be a basis for the
explanation of phenomena such as thermal hystereses, cascades of phase transitions, and memory
efFects.

PACS number(s): 64.70.Rh, 64.60.My

I. INTRODUCTION

During the past 15 years over a hundred materials [1—3]
exhibiting incommensurate properties have been discov-
ered. As the experience of a number of models show, the
reason for the occurrence of incommensurate phases lies
in the existence of two or more competitive interactions
which prefer difFerent periods of ordering. Depending on
the relative strengths of interactions, the ordering xnay
be incommensurate, commensurate, or chaotic. A sim-
ple example is the model of Frenkel and Kontorowa (FK)
[4], studied so far by many authors [5]. It starts from
a discrete harmonic array of atoms in a periodic back-
ground potential and may have any of the three types of
ordering mentioned. In particular, if the background po-
tential is large enough with respect to the harmonic one,
the atoms arrange in a chaotic way. It is important, how-

ever, to stress that such chaotic features may be lost after
the continuation of the original discrete space. For exam-
ple, the continuation of the FK model leads in the lowest
order to the sine-Gordon model, which is integrable and
has no chaotic solutions.

On the other hand, the space continuation is a nec-
essary step in the Landau expansion of the &ee energy.
The latter is based on two approximations: the reduction
of the summation in the reciprocal space to the narrow
range around a given star of wave vectors and the trunca-
tion in the series of powers in the order parameter. While
the choice of the star is related to the details of the com-
petitive interactions, the introduction of the cutouts in
the wave vector summations is justified by the weakness

of these interactions. Indeed, only then can. one exclude
distances in the real space shorter than reciprocal cut-
outs. The only short-range scales that remain are periods
of fast modulations of order parameters, defined by the
star of wave vectors itself.

The truncation of the power series in the Landau ex-
pansion is strictly justified only in the vicinity of the
phase transition at the temperature Tg Rom the high
temperature disordered state to the ordered one. Still,
the Landau expansion sometimes gives a reasonably good
description of the incommensurate-coxnmensurate (IC)
transitions also well below Ty. The range of its applica-
bility depends on its microscopic origin. For example, for
the anisotropic Ising model with nearest and next near-
est neighbors (ANNNI) the Landau expansion, which fol-
lows after continuing both the space and the Ising vari-
ables, reproduces well only the transition line Tz, [5,6].
On the other hand, the Landau expansions for electron-
ically driven charge and spin density wave instabilities
are useful as well in the range of lower temperatures be-
low Ty. The well-known example is the rich phase dia-
gram of the organic chain conductor tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) [7].

In the Landau model the commensurate state below
the critical temperature of the IC transition Tg is charac-
terized by the star of wave vectors fq, ) . The dimension
of the order parameter is proportional to the number of
arms in this star [8]. In most cases the order parame-
ter is a multicomponent (e.g. , complex) quantity. It may
be a one component (i.e., real) quantity only when q
lies in the center or at the border of the Brillouin zone.
The simplest, but still very &equent, cases which allow
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both above possibilities are those with a uniaxial mod-
ulation characterised by a scalar physical quantity such
as the local electron density in charge density waves, the
atomic displacement along some fixed direction in ferro-
electric systems, the magnetization along some preferred
easy axis in xnagnetic systexns, etc. The considerations
in the present work will be limited to such»n~axial mod-
ulations.

As far as qs g 0, &, the star of wave vectors for a uniax-
ial ordering has two points (kqo). The order parameter 4
is then either complex (as is most often the case) or has
an even number of components greater than two (e.g. ,
six for the n»axial spin density wave [9]). In the former
case 4 = pe'@, with p and 4 being the amplitude and
phase which generally vary in space already in the stable
equilibri»m state. The Landau expansion with respect to
the star (+qo) contains, beside the isotropic invariants, a
phase dependent u~lapp term which appears when qo is
close to the commensurate value q, = 2z /n (n = 3, 4, ...).
If one now concentrates on the portion of the phase di-
agraxn with the IC transition to q = q„ it is most con-
venient to pass to the expansion with respect to the star
(kq, ). After this transformation the n»klapp term ac-
quires the form p"[e*"@+c.c.] [with C = P+ (qs —q, )x
being the phase with respect to q,], and an additional
Lifshitz invariant 4'8@'/Bz —4"8%'/Bz with the prefac-
tor (qo —q, ) appears in the Landau expansion. The
latter invariant is essential for the thermodynaxnics of the
corresponding IC transition. If one neglects the space de-
pendence of the amplitude p, the Euler-Lagrange (EL)
equation for the stable configurations is a well-known
sine-Gordon equation. The corresponding phase diagram
shows a "weak" singularity at the continuous transition
from the dilute lattice of solitons in 4 to the commensu-
rate (I = cte) con6guration [10,11].

The approach via the above sine-Gordon model ex-
hausts aB IC transitions with n & 2 in the systems with
weak interactions. Of course, the cases n = 3 and n = 4
are the most interesting, since the corresponding prefac-
tors of e'"@ terms contain powers of amplitude compat-
ible with the isotropic p4 term, which is unavoidable in
any Landau expansion. For the saxne reason the terms
coming kom higher commensurabilities are less and less
ixnportant as n increases. This is in contrast to the
strong-coupling systems in which the discrete space de-
pendence a priori includes all commensurabilities.

Two cases that are not covered by the sine-Gordon
model are the homogeneous ordering with the periodic-
ity of the underlying lattice [n = 1, i.e., q, = 0(mod2z)]
and the dimerization (n = 2, i.e., q, = vr = —z (mod2vr)].
In both cases the Landau expansion cannot have the Lif-
shitz invariant. Namely, the comxnensurate star now has
only one point, so that the basic irreducible representa-
tion is one dimensional, defining a real order parameter.
The notion of phase then loses its sense, since for a si-
nusoidal modulation the displacement is the same (for
n = 1) or has the same absolute value (for n = 2) at all
lattice sites. This value is the only quantity character-
izing the ordered phase and as such represents the real
order parameter u. Since, as indicated above, for n = 1,2
all lattice sites are equivalent, a common generic Landau

expansion can be formulated for both cases. As will be
seen in Sec. II, the essential feature of this expansion is
the possible negative sign of the term proportional to
the squared first derivative of the order parameter. In
order to stabilize the expansion one then has to include
the term with the squared second derivative. This com-
pletes a xninimal model for the commensurate lock-ins
with n = 1,2. It can be extended by further possible
invariants, depending on the details in particular physi-
cal systems. The present analysis, however, will be lim-
ited to the minimal model. Its main aim is to point out
basic qualitative differences between IC transitions with
n = 1,2 and those with n & 2.

The division of uniaxial IC transitions into two classes,
i.e., those with (class I) and without (class II) Lif'shitz in-
variance, is well established in the literature [1,3,12,13].
While the sine-Gordon model, as a minimal one for the
former class, can be completely integrated [10,11], the
problem of integrability of the model for the latter class
is far &om being resolved. Mathematically, the models
based on the Lagrangian with higher derivative terms are
equivalent to the Hamilton problems with an unbounded
kinetic part. Thus one misses a visualization of the cor-
responding solutions through some mechanical analogs.
In spite of these difBculties, previous works (see, e.g. ,
[12,14]) suggested a surprisingly simple phase diagram,
even simpler than that of the sine-Gordon model. It in-
cludes only two homogeneous solutions u = 0 and u = uo,
representing the disordered and commensurately ordered
con6gurations respectively and an (almost) sinusoidal so-
lution u(z) with an incommensurate wave number. The
IC transition itself is of first order. As it was explicitly
stated [12], this phase diagram does not contain configu-
rations of the soliton-lattice type, in contrast to the cor-
responding phase diagram of the sine-Gordon model.

In the present work we start &om the question of the
possible presence of patterns consisting of alternating
commensurate domains, i.e., of soliton lattices for the
class II systems. Due to the aforementioned nontrivial
mathematical properties of the EL equation, such peri-
odic solutions might cover only tiny subsets in the com-
plete space of solutions. Under these circ»mstances a
rather careful numerical analysis is unavoidable. Com-
bining two independent numerical methods, we Snd a
new sequence of highly nonsinusoidal solutions having
a form of domain patterns. They are locally stable
(i.e., metastable) in the range of the control parameter
in which the commensurate configuration is xnetastable
("superheated"). As will be argued below, the presence
of these solutions substantially enriches the phase dia-
gram and may have direct consequences on the IC tran-
sitions in real systems.

In Sec. II we formulate the Landau model for class II
and discuss its mathematical properties. In Sec. III we in-
troduce the systematization of periodic solutions and de-
scribe the n»clerical procedures for obtaining them. The
structure of the phase diagram is presented in Sec. IV.
Finally, in Sec. V we point out the difFerences between
the IC transitions of class I and class II and discuss pos-
sible implications on the experimental properties of a few
well-known materials from class II.
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II. THE MODEL
AND ITS MATHEMATICAL ASPECTS

The wave number for the uniaxial system with a real
order parameter u(x) is situated either at the center

(q, = 0 for n = 1) or at the border (q, = 7r for n = 2)
of the first Brillouin zone. The simple transformation by
which in the latter case the origin of the wave number
is shifted by vr/a enables the construction of the com-
mon Landau expansion for both cases. This transforma-
tion corresponds to the elimination of fast variations in
the direct space, realized by passing from the "displace-
ment" at the nth site d„ to u„= (—1)"d„. Since u„
slowly varies on the lattice scale, just like the displace-
ments in the n = 1 case, one may pass to the continuous
space coordinate provided that the interactions are weak
enough.

The essential property of the Landau expansion for the
incommensurate order close to n = 1 or n = 2 follows
&om the dependence of the &ee-energy density on the
wave number q. The quadratic part f2(q) has to be an
even function of q. Thus, as long as local minima of f2(q)
are at finite values kqo, it has a shape of a bottle bottom,
modeled by

f (q) = (u+ cq'+ ldq') u'(q) (2.1)

+au + -'bu dx, (2.2)

with c & 0 and qo2
———c/d. Here d ) 0 by assump-

tion. The corresponding expression for the &ee-energy
functional in the direct space is

commensurate state is already characterized by two types
of displacements.

Direct considerations of the &ee-energy functional
(2.2) do not give full insight into its stable configura-
tions. Up to "surface" terms, it can be recast into the
form

~i-i=
'
f

+
~

a- —~u +ibu dx.4

4dy

c
2d

(2.3)

In reaching thermodynamic equilibriuxn, the first terxn
in Eq. (2.3) "prefers" sinusoidal modulation of u(x) with
the wave vector q = g—c/2d, provided that c & 0. The
remaining two terms would then stabilize the axnplitude
of the modulation, provided that a —c2/4d & 0. This sim-
ple reasoning gives us an idea how and for what values
of control parameters a and c imcommensurate config-
urations could emerge. Indeed, the line a = c2/4d in
the phase diagram for the free energy (2.2) represents
the transition line between the disordered state u(x) = 0
and the incommensurate sinusoidal state with the wave
vector q = g—c/2d. This conclusion is exact at the
transition line. For a & c2/4d the modulation does not
remain purely sinusoidal, so that the higher harxnonic
terms have to be included in order to reach a true mini-
mum. Still, such terms represent only a sxnall correction
to both the free energy and the wave vector [14] (see also
Sec. IV below). However, our numerical analysis will
show that more complex periodic configurations, which
minimize the &ee-energy functional well below the line
a = c2/4d, cannot be found as a mere extension of this
almost sinusoidal configuration.

We proceed by considering some mathematical aspects
of the problem. Since the coefficients b and d in Eq. (2.2)
are positive by ass»mption, the order parameter and &ee-
energy density are redefined by introducing

where L is some macroscopic length ("volume" ). Here
b ) 0, so that the first and the fourth term in Eq. (2.2)
ensure that the &ee-energy functional is bounded &om
below. The coefBcients a and c depend on temperature
and perhaps on some other physical parameter(s). It is
expected that there is a physical regime in which both co-
efficients are negative. The model (2.2) may be also for-
mulated in the frame of the Lifshitz point theory [15,14].
It is a minimal one since no higher-order derivative terms
such as (dsu/dus) 2, u2(du/dx), etc. are included.

It should be pointed out that the model (2.2) describes
the crossover with the number of components of the order
parameter passing from one (for c ) 0) to two (for c & 0).
The incommensurate ordering with the complex order
parameter is achieved when the center (or the border) of
the Brillouin zone is not inside the cutouts of parabolas
around the minima at +go and so becomes irrelevant for
the Landau expansion. This gradual change of type of
the incommensurate ordering cannot be simulated by the
model with the two-component order parameter, as it
was proposed in Ref. [16]. These two models correspond
to difFerent physical situations, i.e., in the latter case the

= —f
b

c = dc, a = da,

(2.4)

so that

1 fd'ul (du t

f[u] = —
] )

+c] —
)

+au + -', u dx.I. , gdx'y gdx)

(2.5)

d4u d'u—c + au+ u = 0.
dX4 dX2

(2 6)

In what follows we shall omit the bar above the quantities
appearing in Eq. (2.5).

The search for thermodynaxnically stable configura-
tions u(x) begins with the study of the EL equation for
the functional (2.5) as the necessary condition which each
such configuration has to obey. It reads
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The acceptable solutions u(x) of this equation are those
for which the corresponding eigenvalue equation

—c + [a+ 3u (x)]q(x) = Ag(x) (2.7)

III. PERIODIC SOLUTIONS

Any periodic configuration u(x) with the period 2x/k
can be expanded into a Fourier series

with boundary conditions

g(0) = rI(L) = 0, g'(0) = rI'(L) = 0 (2.8)

u(x) = ao+ v 2 ) [a„cos(nkvd) + b„sin(nkz)] . (3.1)
n=l

generates only positive values of A' s. This is the sufficient
and necessary condition for the thermodynamic stability
of the solution u(x).

We are not aware of any method which would lead
to a complete integration of Eq. (2.6). A straightforward
analysis shows that it does not possess the Painleve prop-
erty, i.e., its movable singularities are not only simple
poles in the complex x plane. The Laurent expansion
of the solution which starts with a simple pole does not
exist, so that logarithmic terms have to be included. In
such cases one may try a general transformation of both
the dependent (u) and independent (x) variables with
the aim of finding the transformed difFerential equation
which reveals the Painleve property. We have not found
any such transformation. Even if it exists, it would not
prove the integrability of (2.6), but would give only a
strong indication for it. So, from the point of view of the
Painleve analysis we cannot conclude anything about the
integrability of Eq. (2.6), except that it leaves us with a
strong impression of its probable nonintegrability. A sim-
ilar impression emerges if one considers Eq. (2.6) as the
Hamilton system of equations with two degrees of free-
dom. The integrability is then ensured by the existence
of two invariants. One of them is the Hamiltonian given
by

This series can be further simplified after noticing that
the difFerential equation (2.6) is autonomous and invari-
ant under re8ections x ~ —x and u ~ —u, so that the
solutions may have additional symmetries. Let us dis-
tinguish between four classes: (i) configurations that are
even with respect to both axes u and u', (ii) configura-
tions that are even with respect to the u axis only, (iii)
configurations that are even with respect to the u' axis
only, and (iv) configurations without any particular sym-
metry in the (u, u') plane.

For any periodic configuration u(x) the functional (2.5)
may be replaced by the functional

k

f [u(x)] = — u" + cu' + au + —,'u dx, (3.2)
2K Q

with an error which vanishes as 1/L for large L. Replac-
ing further the integration coordinate x by the coordinate

z =kx, (3.3)

we come to the functional

1f [u(z)] = — k u" + ck u' + au + —,'u dz,
2x Q

(3.4)
H= —u +au —cu —u +2uu4 2 I2 v2 I III

2
(2 9)

where u' = du/dz, etc. Finally, inserting the Fourier
expansion (3.1) into Eq. (3.2) we get

However, we cannot either find or prove the existence of
the second invariant.

Passing to the numerical analysis, we note at the be-
ginning that Eq. (2.6) cannot be treated by a direct
step-by-step integration. Namely, an ad hoc choice of
initial conditions as a rule leads to the unbounded solu-
tion u(x). The reason for such behavior can be traced
to the fact that generally solutions which are thermody-
namically stable are not orbitally stable [17]. The orbital
stability is realized only as a neutral Lyapunov stability,
i.e., with all four Lyapunov exponents being imaginary.
Otherwise at least one of these exponents has a positive
real part since —p is, together with p, also the eigen-
value of the corresponding linearized equation. Since the
Runge-Kutta and similar methods of direct integration of
Eq. (2.6) are inadequate for orbitally»~stable solutions,
we have to use another method, i.e., to minimize the &ee-
energy functional on a given space of configurations and
to check afterward to what extent the obtained solutions
obey the EL equation [18). This approach is tractable
only for periodic configurations to which we limit further
considerations.

f [u(z)] = f(k, ao, ag, . . .)
1) (k4 4+ kz 2+ )( 2+b )+ ( )

(3.5)

where

1((".)) —= — (.")dz.
2K Q

(3.6)

=0:-2k ) {2k n +cn )(a„+b„) =0,
n=1

(3.7)

1.e.,

The functional (3.5) can be immediately minimized
with respect to the wave vector k (note that (u ) and
(u ) do not depend on k):
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) n2(a2 + b2)

0 OO

) n4(a2 + b2)
n=l

(3.8)

We note that the wave vector ko froxn Eq. (3.8) is mea-
sured in units of g—c. Furthermore, the most inter-
esting periodic solutions are expected when c & 0 and
a ( —c2/8, since in this range the homogeneous config-
urations u(x) = kg —a are stable. It is then natural to
ask how homogeneous solutions participate in periodic
solutions, i.e., whether the latter have ferromagnetic seg-
ments. In particular, we expect that ferromagnetic so-
lutions and almost sinusoidal solutions could be mixed
into new periodic con6gurations. Let us therefore limit
further analysis to the range of parameters c ( 0, a ( 0
and introduce the following rede6nitions:

of the obtained solutions. It is analyzed by diagonaliz-
ing the Hess determinant in the space of Fourier coef-
6cients. Instead of being eliminated by making use of
Eq. (3.8), the wave number is treated as an additional
variable, since then the determinant can be much more
easily calculated. As far as the lowest eigenvalue of this
determinant is positive, the con6guration is thermody-
namically stable. The fact that the procedure does not
involve multiperiodic solutions is based on the theory of
normal forms [19].Namely, in the range p ) 1/8, which is
of our primary concern, one pair of Lyapunov exponents
for both homogeneous solutions u = 0 and u = kg —a
is not purely imaginary [17]. One concludes then that
Eq. (2.6) has periodic solutions, but does not have mul-
tiperiodic solutions. The former thus cannot be unstable
on account of the latter.

k—:g—c q, p—:—a/c2,

a„=c~pA„, b„—:c~yB„, n = 0, 1, 2. . .
(3.9)

Note that a ( —c2/8 corresponds to p ) 1/8. Then
Eq. (3.5) reads

f (q, AO, Ai, Bi, . . .)

= pc' ) (q'n4 —q'n' —p) (A„' + B„')+ "- (v')
n=o

(3.10)

Here the function v = v(z) is the Fourier expansion (3.1)
with the amplitudes ao, aq, bq, . . . replaced by the ampli-
tudes Ao, A~, Bq, . . . , etc. Note that p is the only control
parameter which enters into the free energy.

The minimization [18] of the free-energy functional
starts from a 6nite number of 6rst harmonics with initial
values chosen by some reasonable guess. During the vari-
ational steps, we enlarge the number of harmonics until
the values of last harmonics are small enough (at least
10 xs times) in comparison with the first leading har-
monics. In order to get periodic solutions, which will be
shown in Sec. IV, we need at least 50 harmonics. Besides
the periodic configuration v(2:) and the corresponding
value of the free energy, we also obtain the wave num-
ber qo given by Eq. (3.8). Thus we have the complete
characterization of a given periodic solution.

The configurations obtained satisfy well the EL equa-
tion (2.6). After inserting a given periodic solution, the
left-hand side of Eq. (2.6) fiuctuates irregularly as a func-
tion of z on a characteristic scale as small as 10 . The
same conclusion follows from the second check in which
we take a periodic solution as an initial approximation for
the Newton-Kantorovich iteration. For this purpose we
convert the Fourier expansion into a chosen basis of spline
functions. The Newton-Kantorovich procedure ended, as
a rule, after the first iteration [18].

The third n»merical task concerns the local stability

IV. PHASE DIAGRAM

f [ ]
laic 4 ~I2 2 l2 2 + lpl 4 (4.1)

choose

lalc2

bd
(4.2)

as the energy unit, and write f/fo ~ f further on. The
free energy for the simplest homogeneous solutions

v = +1 (4.3)

then reads

f[kl] = (4.4)

The approximate sinusoidal solution which figures in the
phase diagrams of Refs. [14,20] is given by

v(z) ~2 —
l
p+ —

l
cos(z),

3p E 4&
(4.5)

with the corresponding energy

It was already pointed out in the preceding section that
p = —a/c2 is the only combination of original physical pa-
rameters which remains after convenient rede6nition of
scales in the free-energy functional and the EL equation.
Since the variations of parameters a and c are the most
relevant for the IC transition, this means that all criti-
cal lines in the phase diagram represented by the (a, c)
plane are parabolas determined by critical values of p.
All parabolas meet with a common tangent at the origin
(0,0), naxned a "multicritical Lifixhitz point" [14,20].

Further insight into the phase diagram can be gained
from the dependence of the free energy on the param-
eter p for particular con6gurations. Let us rewrite the
expression (3.10) in the form
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f [v(z)] 1 (
fo 3p ( 4)

(4 6)

and the "scaled" wave number

(4.7)

pT 1.177, (4.8)

again close to the approximate value 1.122. The wave
vector corresponding to p~ is only slightly smaller than
that given by Eq. (4.7). Furthermore the solution of
Fig. 1(a) is thermodynamically stable for

p (pa ——1.835 (4.9)

which is close to the estimation pc = 2 given in Ref. [14].
The homogeneous (4.3) and (almost) sinusoidal

[Eq. (4.5) and Table I] configurations represent the skele-
ton of the phase diagram in the range a ( O, c ( 0.
Other, more complex, con6gurations bring a fine struc-
ture into this diagram. We start with a configuration be-
longing to class (ii), presented in Table I(b) and Fig. 1(b).
The appearance of a small circle in Fig. 1(b) indicates
that this configuration emerges through a local mix-

TABLE I. The Fourier coefficients for the conSgurations s
(a) and sd (b).

0.925
—2.551x 10
2.444 x 10
—2.314x 10

(a)
9
11
13
15

1.969 x 10
—1.568x10
1.210 x 10
—9.125x10

0.351
0.794

—0.381
7.873 x 10
3.323 x 10
—9.883x 10
6.204 x 10
3.960 x 10
—1.288 x 10

(b)
9
10
11
12
13
14
15
16
17

9.733 x 10
4.385 x 10
—1.539x 10
1.454 x 10
4.136 x 10
—1.668x 10
1.899 x 10
3.489 x 10
—1.689x 10

[the actual wave number is given by Eq. (3.9)]. The more
precise result for this con6guration, obtained through the
minimization method of Sec. III, is presented in Table
I(a) for p = 1. The solution u(z) and its (u, u') section
are shown in Fig. 1(a). As it was already stated in Ref.
[14], the ratios (as/aq(, ~as/aq(, etc. are rather small,
while the values of aq and the &ee energy f are close to
those given by Eqs. (4.5) and (4.6) (i.e., 0.9128 vs 0.913
and —0.523, vs —0.5208, respectively). Furthermore the
numerical value of the parameter p for which the &ee
energy becomes equal to the &ee energy of the homoge-
neous phase (4.3), i.e., for which the phase transition of
the 6rst order occurs, is

ing of the incommensurate sinusoidal con6guration from
Fig. 1(a) and the commensurate homogeneous configura-
tion e = 1. Its kee energy lies between the energies of
these two con6gurations. The thermodynamic stability
of this con6guration is limited to a rather narrow range
pl, & p C~ with pl, ——0.956 and p~ ——1.05. This is to be
contrasted with the homogeneous configuration, which is
stable for every p & 1/8, and the sinusoidal configuration,
which is stable in the range —1/4 & p & 1.835. The wave
number of the new configuration varies from q(pr, ) = 0.42
to q(p~) = 0.4, i.e., it is considerably smaller than the
wave m~~ber of the sinusoidal configuration [Eq. (4.7)]
everywhere in the domain of its stability. We also note
that the right edge of stability is only slightly above the
crossing of this line with that of the homogeneous ferro-
magnetic configuration (see also Fig. 3).

Next in the hierarchy of complexity is the configura-
tion which again falls into class (i). It has two small
circles in section plane (v, v'), one for each fixed point
v = kl. Since the mixing of the homogeneous and si-
nusoidal solution is even stronger in this case, the cor-
responding energy is higher than that of the configura-
tion &om Fig. 1(b). The representative of this configura-
tion in the (2:,v) and (v, v') planes is shown in Fig. 1(c).
Again, the range of its stability is very narrow and ap-
proximately of the same width as that for the preceding
configuration (pr, = 0.8,p~ ——0.98). The nu~ber of coef-
ficients needed to accomplish the criterion established in
Sec. III for this and further configurations is larger than
50. We do not present them for the sake of space.

The further two configurations falling into classes (i)
and (ii) are shown in Figs. 1(d) and 1(e), respectively.
The simplest configuration &om class (iii) is shown in
Fig. 1(f). Finally, in Fig. 1(g) we present one solution
&om class (iv). This solution has a lower symmetry than
others. Namely, there is no point on the x axis with
respect to which it is either even or odd, opposite to other
solutions for which at least one such point exists. The
configuration u(z) belonging to class (iv) is different (in
the sense given above) from u( —x), but the free energies
and the periods of both u(z) and u( —x) are the same.

All configurations presented [Figs. 1(a)—1(g)], and
hopefully those more complex, could be viewed as be-
ing built &om the following basic blocks: commensurate
domains [left and right small circles in the section plane
(v, v')] and the half-periods of the sinusoidal configura-
tion [left and right halves of large ellipses in the section
plane (v, v')]. Both types of blocks have, up to very slight
deviations, the same lengths in all configurations derived.
Thus we come to some kind of a nonlinear superposition
principle. In that respect one can introduce a systemati-
zation of all periodic configurations by using the following
scheme. Let us denote the blocks &om Figs. 2(a), 2(b),
2(c), and 2(d) by letters s+,s, d+, and d, respectively.
Any periodic con6guration is then designated by a mood
in which the order of letters respects a simple rule by
which a letter with a + (—) subscript can be followed only
by a letter with a —(+) subscript. Taking this rule into
account, one can further simplify the lettering by omit-
ting subscripts. For example, the sinusoidal con6guration
&om Fig. 1(a) is denoted by. . . s+s s~s or in a con-
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(a) (b)
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FIG. 2. The building blocks si (a), s (b), di (c), and d
(d) for configurations &om Fig. l.

FIG. 3. The free energy f vs the control parameter p for the
configurations from Figs. 1(a)—1(f) and for the homogeneous
configuration (dashed line).

densed form 8+s = s2, where the last word corresponds
to one period of the configuration. Note that one con-
densed word must have an even number of letters. There
are three difFerent con6gurations with two-letter words,
namely, 8+s = s

& 8+d = sd, and d+d = d . They
are presented in Figs. 1(a), 1(b), and 1(c), respectively.
The "four-letter" con6gurations are s+8 s+d = 83d,

d+d = 8 d, and g+d d+d = gd . We found
two of these three configurations, i.e., the first [Fig. 1(d)
and the second (Fig. 1(e)]. Finally, the word for the
configuration from Fig. 1(g) has 12 letters and reads
s s+8 8+s s+8 s+d d+s d+ ——s d .

Unfortunately, at the present time we have no efBcient
n»merical method which would enable the determination
of a configuration which corresponds to any chosen word.
Still, one could imagine a word with arbitrarily many let-
ters, i.e., a sequence composed of sinusoidal and commen-
surate domains ordered in a random way inside one long
period. In other w'ords, the great &eedom in the forma-
tion of macroscopic domain patterns may in principle still
be interpreted in terms of the "determinism" presented
in the EL equation (2.6). However, such patterns are
obviously unreachable niimerically. In this respect, we
also mention that we did not find any configuration in
which one commensurate domain is followed by another
without inserting at least one half-sinusoidal block, i.e., a
configuration which would have in the (u, u') section two
small circles in succession. Furthermore, the commensu-
rate domains with larger lengths could be expected for
the parameters p larger than the value given by Eq. (4.8).
However, it comes out that by adding more and more har-
monics the wave xyi~ber of such con6gurations does not
stabilize to a finite value, but continuously goes to zero.

To s»mmarize this section, we show in Fig. 3 the de-
pendence of the &ee energy on the par~~eter p for all the
solutions presented. . The corresponding limits of stabil-

TABLE II. The values of parameter p for the left and
righ't end points of stability ranges for the con6gurations &om
Figs. 1(a)—1(f).

Word
S2

sd
d2

sd
Qdg

Qd4

pL
—0.25

0.95661
0.815
0.894
0.970
0.900

pR
1.835
1.082
0.989
1.020
1.080
1.050

ity are gathered in Table II. Two lines, which dominate
in Fig. 3, belong to the commensurate and sinusoidal
con6gurations. The relevant range of values for p is lim-
ited &om the left side by the edge of thermodynamic
instability of commensurate configuration (p ) I/8) and
&om the right side by the critical value for the transition
kom the commensurate to the sinusoidal configuration
(p ( 1.177). Inside this range there are (probably in-
finitely) many relatively short lines belonging to periodic
con6gurations composed of blocks kom Fig. 2. As a rule,
all these short lines cross the commensurate line on their
right ends and cease to be thermodynamically stable im-
mediately after crossing it.

In the recent analysis of the Landau model for the two-
component ordering Aramburu et al. [16] showed that
in the incommensurate con6gurations one of the com-
ponents may have a soliton latticelike space dependence
which resembles that shown in Fig. 1. Note, however,
that these con6gurations belong to the single line in the
phase diagram, which is equivalent to the line represent-
ing the sinusoidal configurations in Fig. 3.

The periods of the configurations &om Table II are
shown in Fig. 4. This diagram suggests that the sepa-
rate curves are just parts of a smaller number (perhaps
two) of curves representing multivalued dependences of
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V. CONCLUSIONS

The discommensurations, i.e., the objects connecting
commensurate domains with different or equal phases
(n & 3) or signs (n = 1,2), have a central role in the uni-
axial IC transitions. The present analysis shows that in
the systems of class II they enter into the phase diagram
as ingredients of metastable configurations illustrated by
Figs. 1(b)—l(g). As already pointed out in the preced-
ing section, the discommeasurations in these configura-
tions just coincide with the local incommensurate order.
Numerical results indicate that, as a rule, such con6g-
urations may be locally stable only within the range of
coexistence of the homogeneous and the incommensurate
(almost sinusoidal) ordered states. This is in contrast to
class I, in which the sinusoidal incommensurate and the
commensurate con6gurations do not coexist, but instead
pass gradually &om one to another through the contin-
uous family of soliton lattices, with the phase solitons
playing the role of discommensurations. By approaching
the IC transition the distances between two phase soli-
tons (i.e., the lengths of commensurate domains) tead to-
wards infinity, so that a single discommensuration is well
defined. It is also umque since there is only one type of
separatrix which joins two hyperbolic fixed points which
correspoad to homogeneous (commensurate) state(s) in
the sine-Gordon problem. Our numerical results suggest
that this is not the case for class II, i.e., the isolated dis-
commensurations do not appear as stable objects since
all periodic domain con6gurations cease to be stable at

the period on the parameter p. (Note that the periods
of con6gurations with longer words would be situated
higher in the diagram. ) The missing parts on these curves
would belong to unstable periodic configuratio~. Note
that such configurations are out of scope of our numeri-
cal algorithm.

finite periodicities. In other words, although Eq. (2.6)
has, e.g. , solutions with a single solitary discommensu-
ration, they are not thermodynaxnically stable. Further-
more, an isolated discoxnmensuration is not uniquely de-
fined since there are many ways to join two 6xed points
(u = +l, u' = u" = u"' = 0) in Figs. 1(b)—l(g) due
to the complex Lyapunov exponents characterizing their
stability.

The model (2.2) can be extended by further invariants
[such as u2(du/dx) 2], depending on their relevance in par-
ticular physical situations [3,13,21,22]. Such extensions
increase the dimension of the paraxneter space and may
lead to modifications in the phase diagram. Still, we do
not expect that they alter our main conclusions presented
in Fig. 3, which are closely related to the very probable
nonintegrability of the functional (2.2). The integrabil-
ity of the &ee-energy functional can be realized only for
special (and thus marginal) values of parameters.

The presence of metastable configurations makes the
IC transitions for class II more complex than it was
thought before [3,13—15]. In fact, beiag the "droplet"
states which xnix two basic states of the first-order tran-
sition, these configurations complete in a natural way
the phase diagram &oxn Fig. 3. However, it should be
stressed that they are purely intrinsic solutions of the EL
equation for the free-energy functional (2.5). In other
words, there is no aced for some extrinsic inputs [such
as boundaries, external field(s), defects, impurities, etc.],
which are usually necessary for the stabilization of mixed
states in the systems passing through the phase transition
of the 6rst order. However, this does not exclude possi-
ble additional extrinsic in8uences on the "microscopic"
periodic con6gurations, which, as will be argued below,
very probably take place in real systems.

Let us now consider possible physical implications of
metastable lines in Fig. 3. At first, a direct identifi-
cation of a periodic domain con6guration in structural
measurements implies a detailed knowledge of the cor-
responding structure factor. Our preliminary numeri-
cal computations suggest that the structure factors of
domain configurations from Figs. 1(b)—1(g) and that of
the siausoidal configuration [Fig. 1(a)] are hardly distia-
guishable in the experimentally most interesting Brillouin
zones with rather low Bragg indices. More noticeable dif-
ferences are expected, however, in the zones with large
indices in which the scattering &om the domain config-
uration is on the fine scale more noisy than that &om
the sinusoidal configuration. Thus the structural iden-
ti6cation of complex domain patterns could be a subtle
experimental task. Still, if the commensurate and/or in-
commensurate segments are rather long, the correspond-
ing structure factor has coexisting peaks at q = 0 and
q = +g—c/2d. Such a coexistence of peaks was in-
deed observed in the neutron scattering measurements
[23] on the diacetylene bis-p-toluene sulphonate of 2.4-
hexadyne-l. 6 diol (PTS), the system which belongs to
class II and passes through the Li&hitz point by grad-
ual conversion &om the monoxner to the polymer crystal
structure [24,25].

The physical properties of a given systexn are usually
followed by varying one or two parameters, e.g. , temper-
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ature and another appropriate quantity such as pressure,
strain, concentration of some constituent, degree of poly-
merization, etc. Any such variation can in principle be
represented by a path in the (a/b, c/d) plane, i.e., by some
variation of the reduced control parameter p. Depending
on the details of such a path (including its direction) and
on other possible specific in8uences, the system may pass
through a number of metastable periodic configurations,
showing discontinuities in physical properties such as the
staircase dependence on, e.g. , temperature, the hystere-
sis behavior, the dependence on the initial state (i.e.,
history), etc. Such efFects are indeed often met in the
systems of class II [3], such as thiourea [26], ferroelectric
materials such as barium sodium niobate (BSN) [28], and
again PTS [23—25]. The hysteresis and memory efFects in
thiourea [27] and BSN [28] were most often interpreted
by assuming that impurities are mobile enough to form a
density wave as a response to the incommensurate lattice
modulation, which in reverse tends to pin the modulation
wave and to fix its position in the crystal [29,30]. On the
contrary, the explanation of these eKects based on the
present analysis is essentially microscopic and universal
for the whole class II of IC systems [31]. The defects
(and/or other possible extrinsic causes) may still have
a secondary role as triggers which favor the stabiliza-
tion of some particular periodic domain patterns among
all those available &om the phase diagram from Fig. 3.
Our explanation, however, does not invoke their mobility.
Note that the dominant defects in some systems exhibit-
ing a global hysteresis are by their nature imobile, such
as, e.g., those in randomly polymerized crystals of PTS.
The polymerization in PTS acts simultaneously as a con-
trol pararoeter (through the variation of the parameter
c) and as a stabilization mechanism for domain patterns
[25].

In conclusion we stress the theoretical significance of

the considered Landau model. When extended with
transverse gradient terms, it represents the Landau ex-
pansion for, e.g., the ANNNI model in the vicinity of
the Lifshitz point [6]. The phase diagram of Fig. 3 gives
a new insight into this range of ANNNI phase diagram.
Note that periodic domain patterns &om Fig. 3 are not
directly linked to the stable co~mensurate modulated
configurations which appear far enough &om the Lifshitz
point in the ANNNI model [6]. Mathematical proper-
ties of the model considered here are particularly chal-
lenging. Besides being very probably nonintegrable, it
has an unconventional classical mechanical counterpart
with the kinetic energy which is not positively definite
(in contrast to the class I models which do have such a
counterpart because of the absence of higher derivative
terms of the order parameters). As a consequence, the
periodic solutions, which are especially important due
to their thermodynamic stability, have a particular type
of orbital instability. They seem to be immersed in a
"chaotic web" which (again very probably due to the in-
definitiveness of the kinetic part of the Hamiltonian) is
not even localized in the phase space. In that respect one
encounters an intriguing open question of critical Buctu-
ations in a purely (or quasi-) one-dimensional version of
the model, for which the renormalization group expan-
sion [15,22] cannot be applied. This and other previously
mentioned extensions of the model are possible subjects
of future investigations.
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