52 research outputs found

    Zalpha-domains: At the intersection between RNA editing and innate immunity

    Get PDF
    The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.Marie Curie IRG program: (PIRG03-GA-2008-23100); FCT grant: (PTDC/BIA-PRO/112962/2009)

    Crystal Structure of the Soluble Form of Equinatoxin II, a Pore-Forming Toxin from the Sea Anemone Actinia equina

    Get PDF
    AbstractBackground: Membrane poreā€“forming toxins have a remarkable property: they adopt a stable soluble form structure, which, when in contact with a membrane, undergoes a series of transformations, leading to an active, membrane-bound form. In contrast to bacterial toxins, no structure of a pore-forming toxin from an eukaryotic organism has been determined so far, an indication that structural studies of equinatoxin II (EqtII) may unravel a novel mechanism.Results: The crystal structure of the soluble form of EqtII from the sea anemone Actinia equina has been determined at 1.9 ƅ resolution. EqtII is shown to be a single-domain protein based on a 12 strand Ī² sandwich fold with a hydrophobic core and a pair of Ī± helices, each of which is associated with the face of a Ī² sheet.Conclusions: The structure of the 30 N-terminal residues is the largest segment that can adopt a different structure without disrupting the fold of the Ī² sandwich core. This segment includes a three-turn Ī± helix that lies on the surface of a Ī² sheet and ends in a stretch of three positively charged residues, Lys-30, Arg-31, and Lys-32. On the basis of gathered data, it is suggested that this segment forms the membrane pore, whereas the Ī² sandwich structure remains unaltered and attaches to a membrane as do other structurally related extrinsic membrane proteins or their domains. The use of a structural data site-directed mutagenesis study should reveal the residues involved in membrane pore formation

    Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome

    Get PDF
    RNA editing by adenosine deamination generates RNA and protein diversity through the posttranscriptional modification of single nucleotides in RNA sequences. Few mammalian A-to-I edited genes have been identified despite evidence that many more should exist. Here we identify intramolecular pairs of Alu elements as a major target for editing in the human transcriptome. An experimental demonstration in 43 genes was extended by a broader computational analysis of more than 100,000 human mRNAs. We find that 1,445 human mRNAs (1.4%) are subject to RNA editing at more than 14,500 sites, and our data further suggest that the vast majority of pre-mRNAs (greater than 85%) are targeted in introns by the editing machinery. The editing levels of Alu-containing mRNAs correlate with distance and homology between inverted repeats and vary in different tissues. Alu-mediated RNA duplexes targeted by RNA editing are formed intramolecularly, whereas editing due to intermolecular base-pairing appears to be negligible. We present evidence that these editing events can lead to the posttranscriptional creation or elimination of splice signals affecting alternatively spliced Alu-derived exons. The analysis suggests that modification of repetitive elements is a predominant activity for RNA editing with significant implications for cellular gene expression

    The Structure of theCyprinid herpesvirus 3ORF112-ZĪ±Ā·Z-DNA Complex Reveals a Mechanism of Nucleic Acids Recognition Conserved with E3L, a Poxvirus Inhibitor of Interferon Response

    Get PDF
    In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has ZĪ± domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a ZĪ± domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-ZĪ± in complex with an 18-bp CpG DNA repeat, at 1.5 ƅ. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of ZĪ± domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.FCT grants: PTDC/BIA-PRO/112962/2009; IF/00641/2013; SFRH/BD/51626/2011

    Intron retention in the 5'UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in arabidopsis

    Get PDF
    Root vacuolar sequestration is one of the best-conserved plant strategies to cope with heavy metal toxicity. Here we report that zinc (Zn) tolerance in Arabidopsis requires the action of a novel Major Facilitator Superfamily (MFS) transporter. We show that ZIF2 (Zinc-Induced Facilitator 2) localises primarily at the tonoplast of root cortical cells and is a functional transporter able to mediate Zn efflux when heterologously expressed in yeast. By affecting plant tissue partitioning of the metal ion, loss of ZIF2 function exacerbates plant sensitivity to excess Zn, while its overexpression enhances Zn tolerance. The ZIF2 gene is Zn-induced and an intron retention event in its 5'UTR generates two splice variants (ZIF2.1 and ZIF2.2) encoding the same protein. Importantly, high Zn favours production of the longer ZIF2.2 transcript, which compared to ZIF2.1 confers greater Zn tolerance to transgenic plants by promoting higher root Zn immobilization. We show that the retained intron in the ZIF2 5'UTR enhances translation in a Zn-responsive manner, markedly promoting ZIF2 protein expression under excess Zn. Moreover, Zn regulation of translation driven by the ZIF2.2 5'UTR depends largely on a predicted stable stem loop immediately upstream of the start codon that is lost in the ZIF2.1 5'UTR. Collectively, our findings indicate that alternative splicing controls the levels of a Zn-responsive mRNA variant of the ZIF2 transporter to enhance plant tolerance to the metal ion.FCT PostDoctoral Fellowships: SFRH/BPD/44640/2008, SFRH/BPD/81221/2011

    Crystal structure of a poxvirus-like zalpha domain from cyprinid herpesvirus 3

    Get PDF
    Zalpha domains are a subfamily of the winged helix-turn-helix domains sharing the unique ability to recognize CpG repeats in the left-handed Z-DNA conformation. In vertebrates, domains of this family are found exclusively in proteins that detect foreign nucleic acids and activate components of the antiviral interferon response. Moreover, poxviruses encode the Zalpha domain-containing protein E3L, a well-studied and potent inhibitor of interferon response. Here we describe a herpesvirus Zalpha-domain-containing protein (ORF112) from cyprinid herpesvirus 3. We demonstrate that ORF112 also binds CpG repeats in the left-handed conformation, and moreover, its structure at 1.75 ƅ reveals the Zalpha fold found in ADAR1, DAI, PKZ, and E3L. Unlike other Zalpha domains, however, ORF112 forms a dimer through a unique domain-swapping mechanism. Thus, ORF112 may be considered a new member of the Z-domain family having DNA binding properties similar to those of the poxvirus E3L inhibitor of interferon response.FCT PhD fellowships: (SFRH/BPD/71629/2010, SFRH/BD/51626/2011), MX-1428 BAG program

    Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenario

    Get PDF
    Current knowledge on the biological responses of freshwater fish under projected scenarios of climate change remains limited. Here, we examine differences in the protein configuration of two endemic Iberian freshwater fish species, Squalius carolitertii and the critically endangered S. torgalensis that inhabit in the Atlantic-type northern and in the Mediterranean-type southwestern regions, respectively. We performed protein structure modeling of fourteen genes linked to protein folding, energy metabolism, circadian rhythms and immune responses. Structural differences in proteins between the two species were found for HSC70, FKBP52, HIF1Ī± and GPB1. For S. torgalensis, besides structural differences, we found higher thermostability for two proteins (HSP90 and GBP1), which can be advantageous in a warmer environment. Additionally, we investigated how these species might respond to projected scenarios of 3Ā° climate change warming, acidification (Ī”pH = -0.4), and their combined effects. Significant changes in gene expression were observed in response to all treatments, particularly under the combined warming and acidification. While S. carolitertii presented changes in gene expression for multiple proteins related to folding (hsp90aa1, hsc70, fkbp4 and stip1), only one such gene was altered in S. torgalensis (stip1). However, S. torgalensis showed a greater capacity for energy production under both the acidification and combined scenarios by increasing cs gene expression and maintaining ldha gene expression in muscle. Overall, these findings suggest that S. torgalensis is better prepared to cope with projected climate change. Worryingly, under the simulated scenarios, disturbances to circadian rhythm and immune system genes (cry1aa, per1a and gbp1) raise concerns for the persistence of both species, highlighting the need to consider multi-stressor effects when evaluating climate change impacts upon fish. This work also highlights that assessments of the potential of endangered freshwater species to cope with environmental change are crucial to help decision-makers adopt future conservation strategies.info:eu-repo/semantics/publishedVersio

    Mismatch Bias in Exonic Repetitive-Element Sequences

    No full text
    <div><p>(A) Plot of the nature and number of mismatches within Alu and L1 sequences present in human cDNAs. For reasons of comparison the L1 mismatch numbers have been multiplied by 2.9 so that the non-AtoG mismatch count for Alu and L1 is identical. Transition mismatches AtoG, GtoA, CtoT, and TtoC are displayed together for comparison.</p> <p>(B) Plotted are the total number of Alu sequences found in human cDNAs (first column) and the number of elements harboring AtoG and GtoA mismatches (second and last column). The third column indicates the high confidence set of edited elements (Ī± = 0.000001).</p></div

    Editing of Alternative Foldback Structures of GPR81 Pre-mRNA

    No full text
    <div><p>(A) The position and orientation of all four Alu elements in GPR81 pre-mRNA is indicated. Three alternative Alu pairings (Iā€“III) are predicted and experimental editing analysis indicates that all three do form in vivo. ORF, open reading frame; *, editing sites.</p> <p>(B) Editing analysis of AluSp+ in GPR81. Percentages of editing in human brain are indicated. The exonic sequence appears in capitals. The edited AT dinucleotide that becomes a splice donor site is underlined.</p></div
    • ā€¦
    corecore