23 research outputs found

    Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from bone marrow and adipose tissue, have the potential to decrease cognitive deficits, possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis, synaptogenesis and angiogenesis. These processes are mediated primarily by the secretion of many growth factors, anti-inflammatory proteins, membrane receptors, microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several functional molecules like proteins, lipids and regulatory RNA which can modify cell metabolism. In the proteomic characterization of the content of MSC-derived exosomes, more than 730 proteins have been identified, some of which are specific cell type markers and others are involved in the regulation of binding and fusion of exosomes with adjacent cells. Furthermore, some factors were found that promote the recruitment, proliferation and differentiation of other cells like neural stem cells. Moreover, within exosomal cargo, a wide range of miRNAs were found, which can control functions related to neural remodeling as well as angiogenic and neurogenic processes. Taking this into consideration, the use of exosomes could be part of a strategy to promote neuroplasticity, improve cognitive impairment and neural replacement in AD. In this review, we describe how exosomes are involved in AD pathology and discuss the therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo

    PSEN1 c.1292C<A Variant and Early-Onset Alzheimer’s Disease: A Scoping Review

    Get PDF
    Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive loss of cognitive function, with β-amyloid plaques and neurofibrillary tangles being its major pathological findings. Although the disease mainly affects the elderly, c. 5–10% of the cases are due to PSEN1, PSEN2, and APP mutations, principally associated with an early onset of the disease. The A413E (rs63750083) PSEN1 variant, identified in 2001, is associated with early-onset Alzheimer’s disease (EOAD). Although there is scant knowledge about the disease’s clinical manifestations and particular features, significant clinical heterogeneity was reported, with a high incidence of spastic paraparesis (SP), language impairments, and psychiatric and motor manifestations. This scoping review aims to synthesize findings related to the A431E variant of PSEN1. In the search, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the guidelines proposed by Arksey and O’Malley. We searched and identified 247 studies including the A431E variant of PSEN1 from 2001 to 2021 in five databases and one search engine. After the removal of duplicates, and apply inclusion criteria, 42 studies were finally included. We considered a narrative synthesis with a qualitative approach for the analysis of the data. Given the study sample conformation, we divided the results into those carried out only with participants carrying A431E (seven studies), subjects with PSEN variants (11 studies), and variants associated with EOAD in PSEN1, PSEN2, and APP (24 studies). The resulting synthesis indicates most studies involve Mexican and Mexican-American participants in preclinical stages. The articles analyzed included carrier characteristics in categories such as genetics, clinical, imaging techniques, neuropsychology, neuropathology, and biomarkers. Some studies also considered family members’ beliefs and caregivers’ experiences. Heterogeneity in both the studies found and carrier samples of EOAD-related gene variants does not allow for the generalization of the findings. Future research should focus on reporting data on the progression of carrier characteristics through time and reporting results independently or comparing them across variants

    Intranasal Administration of Undifferentiated Oligodendrocyte Lineage Cells as a Potential Approach to Deliver Oligodendrocyte Precursor Cells into Brain

    Get PDF
    Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration. In this study, we used the nose-to brain pathway to deliver oligodendrocyte lineage cells (human oligodendroglioma (HOG) cells), which behave similarly to OPCs in vitro. To this end, we administered GFP-labelled HOG cells intranasally to experimental animals, which were subsequently euthanised at 30 or 60 days. Our results show that the intranasal route is a viable route to the CNS and that HOG cells administered intranasally migrate preferentially to niches of OPCs (clusters created during embryonic development and adult life). Our study provides evidence, albeit limited, that HOG cells either form clusters or adhere to clusters of OPCs in the brains of experimental animals

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Chitosan&ndash;Hydroxycinnamic Acids Conjugates: Emerging Biomaterials with Rising Applications in Biomedicine

    No full text
    Over the past thirty years, research has shown the huge potential of chitosan in biomedical applications such as drug delivery, tissue engineering and regeneration, cancer therapy, and antimicrobial treatments, among others. One of the major advantages of this interesting polysaccharide is its modifiability, which facilitates its use in tailor-made applications. In this way, the molecular structure of chitosan has been conjugated with multiple molecules to modify its mechanical, biological, or chemical properties. Here, we review the conjugation of chitosan with some bioactive molecules: hydroxycinnamic acids (HCAs); since these derivatives have been probed to enhance some of the biological effects of chitosan and to fine-tune its characteristics for its application in the biomedical field. First, the main characteristics of chitosan and HCAs are presented; then, the currently employed conjugation strategies between chitosan and HCAs are described; and, finally, the studied biomedical applications of these derivatives are discussed to present their limitations and advantages, which could lead to proximal therapeutic uses

    Wound healing and antioxidant capacity of Musa paradisiaca Linn. peel extracts

    No full text
    Context: Musa paradisiaca has several biological activities within them wound healing, hypoglycemic, hepatoprotective, antimicrobial, antioxidant, among others. However, these properties in peel have been poorly explored. Aims: Evaluate the wound healing activity induced by an incision wound model using methanolic, hexanoic and chloroformic extracts from M. paradisiaca peel. Methods: Dehydrated M. paradisíaca peel was mixed with methanol, hexane, and chloroform. The presence of bioactive substances of the M. paradisiaca peel extracts was carried out by the Trease and Evans methods. Antioxidant capacity was evaluated by the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method. Acute toxicity was realized according to up and down OECD procedure in BALB/c mice. Wound healing activity was evaluated in male Wistar rats. Histological analyses of tissues were made by microscopy using staining methods of hematoxylin and eosin and Masson-trichrome. Results: Treated groups with methanolic and hexanoic extracts of M. paradisiaca peel showed better wound healing activity in comparison with the group treated with chloroformic extract, with an inhibition of DPPH radical bleaching of 89-90%. It may be due to the presence of alkaloids, tannins, saponins and phenols as principal constituents by conferring antioxidant capacity. The extract did not induce any toxicity. Conclusions: The findings showed the wound healing and antioxidant capacity of M. paradisiaca peel extract. It was observed that depending on the extraction solvent; there is a variation in the antioxidant capacity that also affects the effectiveness of the restoration of tissue, suggesting that the antioxidant capacity could play a major role in the process of wound healing

    Heterogeneity of Genetic Damage in Cervical Nuclei and Lymphocytes in Women with Different Levels of Dysplasia and Cancer-Associated Risk Factors

    No full text
    The comet assay can be used to assess genetic damage, but heterogeneity in the length of the tails is frequently observed. The aims of this study were to evaluate genetic damage and heterogeneity in the cervical nuclei and lymphocytes from patients with different levels of dysplasia and to determine the risk factors associated with the development of cervical cancer. The study included 97 females who presented with different levels of dysplasia. A comet assay was performed in peripheral blood lymphocytes and cervical epithelial cells. Significant genetic damage (P≤0.05) was observed only in patients diagnosed with nuclei cervical from dysplasia III (NCDIII) and lymphocytes from dysplasia I (LDI). However, the standard deviations of the tail lengths in the cervical nuclei and lymphocytes from patients with dysplasia I were significantly different (P≤0.0001) from the standard deviations of the tail lengths in the nuclei cervical and lymphocytes from patients with DII and DIII (NCDII, NCDIII and LDII, LDIII), indicating a high heterogeneity in tail length. Results suggest that genetic damage could be widely present but only manifested as increased tail length in certain cell populations. This heterogeneity could obscure the statistical significance of the genetic damage

    Olvanil inhibits adipocyte differentiation in 3T3-L1 cells, reduces fat accumulation and improves lipidic profile on mice with diet-induced obesity

    No full text
    Aim: The present study is aimed to examine olvanil's effect in preadipocyte cell culture and on a murine model of diet-induced obesity. We hypothesized that olvanil by being a capsaicinoid will reduce the differentiation to mature adipocytes and reduce the weight of fat tissue in the studied mice. Methods: To determine the effect of olvanil on adipogenesis, 3T3-L1 cells were cultured. Oil red staining was performed to determine lipid accumulation, whereas triglycerides were measured by biochemical determination. Expression of PPAR-γ and PREF-1 were measured by RT-PCR. Therefore, male C57BL/6J mice (CICUAL:2018-020B) were fed with a high-fat diet for 12 weeks to develop a murine model of diet-induced obesity (DIO). Animals were separated into 6 experimental groups: control (standard diet), DIO (high-fat diet), DIO + orlistat (10 mg/kg), DIO + olvanil (10 mg/kg), DIO + olvanil (25 mg/kg) and DIO + olvanil (50 mg/kg), olvanil was administered for 4 weeks. Results: Olvanil inhibits adipogenesis, reduces lipid accumulation and triglycerides in 3T3-L1 adipocytes. PPAR-ɣ gene expression was suppressed while PREF-1 was increased in adipocytes treated with olvanil. Whereas protein expression of FABP4 and PPAR-ɣ decreases significantly with olvanil. The results suggest that olvanil can inhibit the differentiation of preadipocytes to adipocytes through the overexpression or maintenance of PREF-1 levels and the suppression of PPAR-ɣ, and FABP4. Therefore, in diet-induced obesity in mice, olvanil decreases fat accumulation in the body and improve lipid profile by decreasing LDL, VLDL and triglycerides in serum. Conclusion: Olvanil inhibits adipocyte differentiation in 3T3-L1 cells and reduces fat accumulation and ameliorate lipid profile in diet-induced obese mice
    corecore