31 research outputs found

    Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art

    Get PDF
    Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.The European Union is acknowledged for funding this research through Horizon 2020 MSCA-IF-2018 No 838171 (TEXTHIOL). IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, Grant SEV- 2016-0686). European Regional Development fund Project “MSCAfellow4 @ MUNI” supported by MEYS CR (No. CZ.02.2.69/0.0/0.0/20_079/0017045) is acknowledged. N.A. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 753293, acronym NanoBEAT

    Recent Advances on 2D Materials towards 3D Printing

    Get PDF
    In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.Financial support from Operational Program Research, Development and Education-Project “MSCAfellow4@MUNI” (CZ.02.2.69/0.0/0.0/20_079/0017045) is acknowledged

    Thiophene-Based Trimers and Their Bioapplications: An Overview

    Get PDF
    Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.Operational Program Research, Development, and Education Project “MSCAfellow4@MUNI” (No. CZ.02.2.69/0.0/0.0/20_079/0017045) is acknowledged. The European Union is acknowledged for funding this research through Horizon 2020 MSCA-IF-2018 No 838171 (TEXTHIOL)

    2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer

    Get PDF
    Carbon nanomaterials (CNMs) and conjugated polymers (CPs) are actively investigated in applications such as optics, catalysis, solar cells, and tissue engineering. Generally, CNMs are implemented in devices where the relationship between the active elements and the micro and nanostructure has a crucial role. However, they present some limitations related to solubility, processibility and release or degradability that affect their manufacturing. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT) or derivatives can hide this limitation by electrodeposition onto an electrode. In this work we have explored two different CNMs immobilization methods in 2D and 3D structures. First, CNM/CP hybrid 2D films with enhanced electrochemical properties have been developed using bis-malonyl PEDOT and fullerene C60. The resulting 2D films nanoparticulate present novel electrochromic properties. Secondly, 3D porous self-standing scaffolds were prepared, containing carbon nanotubes and PEDOT by using the same bis-EDOT co-monomer, which show porosity and topography dependence on the composition. This article shows the validity of electropolymerization to obtain 2D and 3D materials including different carbon nanomaterials and conductive polymers.This research was funded by the Spanish Ministry of Economy and Competitiveness MINECO (project CTQ2016-76721-R), the University of Trieste, Diputación Foral de Gipuzkoa program Red (101/16), the European Commission (H2020-MSCA-RISE-2016, grant agreement no. 734381, acronym CARBO-IMmap) and ELKARTEK bmG2017 (ref: Elkartek KK-2017/00008, BOPV resolution: 8 Feb 2018). M.P., as the recipient of the AXA Chair, is grateful to the AXA Research Fund for financial support. This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant no. MDM-2017-0720. N.A. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 753293, acronym NanoBEAT

    The era of nano-bionic: 2D materials for wearable and implantable body sensors

    Get PDF
    Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices

    Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges and Opportunities

    Get PDF
    Unformatted postprintConducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of current devices are rigid 2D systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable 3D (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene) (PEDOT), polypyrrole (PPy) and polyaniline (PANi). It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene and silver nanowires. Afterwards, the foremost application of CPs processed by 3D printing techniques in the biomedical and energy fields, i.e., wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. N.A. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 753293, acronym NanoBEAT

    Estudio sobre la influencia de la turnicidad en los hábitos alimentarios de los profesionales sanitarios

    Get PDF
    El trabajo a turnos produce alteraciones en el estilo y calidad de vida de los trabajadores sanitarios. Es un factor psicosocial desfavorable para el bienestar del trabajador. Asimismo, produce alteraciones del sueño, de la alimentación, de la vida familiar, social y laboral. Con este trabajo se ha pretendido estudiar cómo la turnicidad influye en los hábitos alimentarios de los trabajadores de este sector, ya que constituyen un grupo muy numeroso y que con frecuencia pasan la mayor parte de su vida laboral trabajando en turnos rotatorios. Tras analizar la relación entre el trabajo a turnos y diversas variables relacionadas con la alimentación y la práctica de ejercicio físico, se ha observado que este tipo de trabajo favorece un mayor consumo de alimentos poco saludables (bollería, snacks y bebidas con gas) por parte de los trabajadores, no ocurriendo lo mismo con el consumo de café. Sin embargo, este consumo no implica un IMC más elevado en estos individuos respecto a aquellos que trabajan en turno fijo. Por otra parte se ha observado que los propios trabajadores consideran que sería más fácil mantener unos hábitos alimentarios saludables si tuvieran un horario fijo de trabajo. Del mismo modo se ha observado que los turnos favorecen una menor calidad del sueño, aunque no conllevan una menor práctica de ejercicio físico

    Fast Visible-Light Photopolymerization in the Presence of Multiwalled Carbon Nanotubes: Toward 3D Printing Conducting Nanocomposites

    Get PDF
    [EN] A new photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine, and multiwalled carbon nanobutes (MWCNTs) is presented for visible-light-induced photopolymerization of acrylic monomers. Using this PIS, photopolymerization of acrylamide and other acrylic monomers was quantitative in seconds. The intervention mechanism of CNTs in the PIS was studied deeply, proposing a surface interaction of MWCNTs with Rf which favors the radical generation and the initiation step. As a result, polyacrylamide/MWCNT hydrogel nanocomposites could be obtained with varying amounts of CNTs showing excellent mechanical, thermal, and electrical properties. The presence of the MWCNTs negatively influences the swelling properties of the hydrogel but significantly improves its mechanical properties (Young modulus values) and electric conductivity. The new PIS was tested for 3D printing in a LCD 3D printer. Due to the fast polymerizations, 3D-printed objects based on the conductive polyacrylamide/CNT nanocomposites could be manufactured in minutes.The authors are thankful for technical and human support provided by IZO-SGI SGIker of UPV/EHU. The authors would like to thank the European Commission for financial support through funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 823989

    Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing

    Get PDF
    3D conductive materials such as polymers and hydrogels that interface between biology and electronics are actively being researched for the fabrication of bioelectronic devices. In this work, short-time (5 s) photopolymerizable conductive inks based on poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) dispersed in an aqueous matrix formed by a vinyl resin, poly(ethylene glycol) diacrylate (PEGDA) with different molecular weights (M-n = 250, 575, and 700 Da), ethylene glycol (EG), and a photoinitiator have been optimized. These inks can be processed by Digital Light 3D Printing (DLP) leading to flexible and shape-defined conductive hydrogels and dry conductive PEDOTs, whose printability resolution increases with PEGDA molecular weight. Besides, the printed conductive PEDOT-based hydrogels are able to swell in water, exhibiting soft mechanical properties (Young's modulus of similar to 3 MPa) similar to those of skin tissues and good conductivity values (10(-2) S cm(-1)) for biosensing. Finally, the printed conductive hydrogels were tested as bioelectrodes for human electrocardiography (ECG) and electromyography (EMG) recordings, showing a long-term activity, up to 2 weeks, and enhanced detection signals compared to commercial Ag/AgCl medical electrodes for health monitoring.This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under grant agreement No. 823989 “IONBIKE”

    Mixed Conductive, Injectable, and Fluorescent Supramolecular Eutectogel Composites

    Get PDF
    Funding Information: This work was supported by Marie Sklodowska‐Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. M. C.‐G. thanks Emakiker Grant Program of POLYMAT. L. C. T. is grateful to Fundação para a Ciência e a Tecnologia (FCT/MCTES) in Portugal for her research contract under Scientific Employment Stimulus (2020.01555.CEECIND), and Associate Laboratory for Green Chemistry—LAQV, which is also financed by FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). D. M. thanks “Ayuda RYC2021‐031668‐I financiada por MCIN/AEI/10.13039/501100011033 y por la Unión Europea NextGenerationEU/PRTR”. The authors thank the technical and human support provided by SGIker (UPV/EHU/ERDF, EU). Funding Information: This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. M. C.-G. thanks Emakiker Grant Program of POLYMAT. L. C. T. is grateful to Fundação para a Ciência e a Tecnologia (FCT/MCTES) in Portugal for her research contract under Scientific Employment Stimulus (2020.01555.CEECIND), and Associate Laboratory for Green Chemistry—LAQV, which is also financed by FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). D. M. thanks “Ayuda RYC2021-031668-I financiada por MCIN/AEI/10.13039/501100011033 y por la Unión Europea NextGenerationEU/PRTR”. The authors thank the technical and human support provided by SGIker (UPV/EHU/ERDF, EU). Publisher Copyright: © 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.Eutectogels are an emerging family of soft ionic materials alternative to ionic liquid gels and organogels, offering fresh perspectives for designing functional dynamic platforms in water-free environments. Herein, the first example of mixed ionic and electronic conducting supramolecular eutectogel composites is reported. A fluorescent glutamic acid-derived low-molecular-weight gelator (LMWG) was found to self-assemble into nanofibrillar networks in deep eutectic solvents (DES)/poly(3,4-ethylenedioxythiophene) (PEDOT): chondroitin sulfate dispersions. These dynamic materials displayed excellent injectability and self-healing properties, high ionic conductivity (up to 10−2 S cm−1), good biocompatibility, and fluorescence imaging ability. This set of features turns the mixed conducting supramolecular eutectogels into promising adaptive materials for bioimaging and electrostimulation applications.publishersversionpublishe
    corecore