90 research outputs found

    Broadband nanodielectric spectroscopy by means of amplitude modulation electrostatic force microscopy (AM-EFM)

    Get PDF
    In this work we present a new AFM based approach to measure the local dielectric response of polymer films at the nanoscale by means of Amplitude Modulation Electrostatic Force Microscopy (AM-EFM). The proposed experimental method is based on the measurement of the tip–sample force via the detection of the second harmonic component of the photosensor signal by means of a lock-in amplifier. This approach allows reaching unprecedented broad frequency range (2–3×104 Hz) without restrictions on the sample environment. The method was tested on different poly(vinyl acetate) (PVAc) films at several temperatures. Simple analytical models for describing the electric tip–sample interaction semi-quantitatively account for the dependence of the measured local dielectric response on samples with different thicknesses and at several tip–sample distances

    Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy

    Get PDF
    We present a simple method to quantitatively image the dielectric permittivity of soft materials at nanoscale using electrostatic force microscopy (EFM) by means of the double pass method. The EFM experiments are based on the measurement of the frequency shifts of the oscillating tip biased at two different voltages. A numerical treatment based on the equivalent charge method allows extracting the values of the dielectric permittivity at each image point. This method can be applied with no restrictions of film thickness and tip radius. This method has been applied to image the morphology and the nanodielectric properties of a model polymer blend of polystyrene and poly(vinyl acetate)

    Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images

    Get PDF
    Dielectric relaxation (DR) has shown to be a very useful technique to study dielectric materials like polymers and other glass formers, giving valuable information about the molecular dynamics of the system at different length and time scales. However, the standard DR techniques have a fundamental limitation: they have no spatial resolution. This is of course not a problem when homogeneous and non-structured systems are analyzed but it becomes an important limitation for studying the local properties of heterogeneous and/or nano-structured materials. To overcome this constrain we have developed a novel approach that allows quantitatively measuring the local dielectric permittivity of thin films at the nanoscale by means of Electrostatic Force Microscopy. The proposed experimental method is based on the detection of the local electric force gradient at different values of the tip-sample distance. The value of the dielectric permittivity is then calculated by fitting the experimental points using the Equivalent Charge Method. Even more interesting, we show how this approach can be extended in order to obtain quantitative dielectric images of insulating thin films with an excellent lateral resolution

    Imaging dielectric relaxation in nanostructured polymers by frequency modulation electrostatic force microscopy

    Get PDF
    We have developed a method for imaging the temperature-frequency dependence of the dynamics of nanostructured polymer films with spatial resolution. This method provides images with dielectric compositional contrast well decoupled from topography. Using frequency-modulation electrostatic-force-microscopy, we probe the local frequency-dependent (0.1–100 Hz) dielectric response through measurement of the amplitude and phase of the force gradient in response to an oscillating applied electric field. When the phase is imaged at fixed frequency, it reveals the spatial variation in dielectric losses, i.e., the spatial variation in molecular/dipolar dynamics, with 40 nm lateral resolution. This is demonstrated by using as a model system; a phase separated polystyrene/polyvinyl-acetate (PVAc) blend. We show that nanoscale dynamic domains of PVAc are clearly identifiable in phase images as those which light-up in a band of temperature, reflecting the variations in the molecular/dipolar dynamics approaching the glass transition temperature of PVAc

    Comment on "Anomalous structural recovery in the near glass transition range in a polymer glass: Data revisited in light of temperature variability in vacuum oven-based experiments"

    Get PDF
    Recent efforts, fostered by a pioneering work by us, have shown the of multiple steps in the recovery of equilibrium of glasses. Jin and McKenna raise concerns regarding the validity of such scenario alleging that the multiple recovery steps would be an artifact arising from poor temperature control in the oven used for isothermal glass equilibration. We critically discuss Jin and McKenna arguments from both the viewpoints of scrutinizing previous literature data and that of the temperature control in the oven. In doing so, we provide compelling arguments that Jin and McKenna conjectures are unjustified and point out the need for efforts to describe glass dynamics significantly below the glass transition temperature, T-g, by accounting for the presence of different relaxation mechanisms active in glass equilibration

    Measuring dielectric properties at the nanoscale using Electrostatic Force Microscopy

    Get PDF
    Several electrostatic force microscopy (EFM) - based methods have been recently developed to study the nanoscale dielectric properties of thin insulating layers. Some methods allow measuring quantitatively the static dielectric permittivity whereas some others provide qualitative information about the temperature-frequency dependence of dielectric properties. In this chapter, all these methods are described and illustrated by experiments on pure and nanostructured polymer films. A section is dedicated to EFM probe - sample models and especially to the Equivalent Charge Method (ECM)

    Dielectric properties of thin insulating layers measured by Electrostatic Force Microscopy

    Get PDF
    In order to measure the dielectric permittivity of thin insulting layers, we developed a method based on electrostatic force microscopy (EFM) experiments coupled with numerical simulations. This method allows to characterize the dielectric properties of materials without any restrictions of film thickness, tip radius and tip-sample distance. The EFM experiments consist in the detection of the electric force gradient by means of a double pass method. The numerical simulations, based on the equivalent charge method (ECM), model the electric force gradient between an EFM tip and a sample, and thus, determine from the EFM experiments the relative dielectric permittivity by an inverse approach. This method was validated on a thin SiO2 sample and was used to characterize the dielectric permittivity of ultrathin poly(vinyl acetate) and polystyrene films at two temperatures

    Effect of environmental humidity on the ionic transport of poly(ethylene oxide) thin films by local dielectric spectroscopy

    Get PDF
    The effect of humidity on the ionic transport in the amorphous phase of poly(ethylene oxide) thin films has been studied by via local dielectric spectroscopy. We explored a controlled humidity range between 15 %RH and 50 %RH. AFM-based local dielectric imaging allowed to obtain simultaneously the thin films topography and the corresponding dielectric contrast maps. No humidity effect on the film topography was observed whereas large variation of the dielectric signal could be detected. In addition, we observed a clear dielectric contrast in different locations on the thin film surface. At selected regions with high contrast in the dielectric maps, we performed nanoDielectric Spectroscopy (nDS) measurements covering the frequency range from 5 Hz to 100 kHz. By modeling these spectroscopy results, we quantified the conductivity of the amorphous phase of the semicrystalline poly(ethylene oxide) films. The crystalline fraction of the PEO thin films was extracted and found to be about 36%, independently of humidity. However, the average conductivity increased by a factor of 25 from 2×10- 10 to 5×10-9 S/cm, by changing environmental humidity in the explored %RH range.This work was supported by the European Union: EUSMI, H2020-INFRAIA-2016-1, PROJECT 731019. A. A. acknowledges funding from Spanish Government “Ministerio de Ciencia, Innovacion y Universidades” (PGC2018-094548-B-I00 (MCIU/AEI/FEDER, UE)), and Basque Government (IT-1175-19). D. E. M. acknowledges financial support via the “Juan de la Cierva – Incorporación” grant (IJCI-2017-31600, MCIU – Spain)

    Dynamics of Confined Short-Chain alkanol in MCM-41 by Dielectric Spectroscopy: Effects of matrix and system Treatments and Filling Factor

    Get PDF
    The dynamics of n-propanol confined in regular MCM-41 matrix with the pore size Dpore = 40 Ă…, under various matrix conditioning and sample confining conditions, using broadband dielectric spectroscopy (BDS), is reported. First, various drying procedures with the capacitor filling under air or N2 influence the BDS spectra of the empty MCM-41 and the confined n-PrOH/MCM-41 systems, but have a little effect on the maximum relaxation time of the main process. Finally, various filling factors of n-PrOH medium in the optimally treated MCM-41 system lead to unimodal or bimodal spectra interpreted in terms of the two distinct dynamic phases in the confined states.This research was funded by the EUSMI/Horizon 2020 grants: E181200215 and E 180300076 and E180300077 and by the Slovak Research and Development Agency (SRDA) under the contract No. APVV-16-0369. And J.B. was funded by the VEGA Agency, Slovakia with Grant No. 2/0030/16
    • …
    corecore