22 research outputs found

    Building irregularity issues and architectural design in seismic areas

    Get PDF
    When designing buildings in seismic areas, choices of the architectural designer heavily influences seismic structural performances. Namely, building morphology may lead to complex seismic responses as it occurs when building plan and elevation become irregular. Typical irregularities are due to architectural, functional and distribution constraints, thus leading to plan or vertical or combined plan/vertical irregularities. A frequent plan-wise irregularity arises when earthquake resistant structures, such as cores and shear walls, are concentrated on one side of the building plan, while vertical irregularity often arises from the presence of soft stories especially located at the ground level or, less frequently, at an intermediate level. In the last decades, some trends in architectural design, such as Deconstructivism and other contemporary theories, worked in pursuing architectural solutions based on the concept of �deconstruction� in place of �construction�, favoring non-rigid schemes, non-regular shapes and, more generally, avoiding geometric rules and classical canons of symmetry and regularity. In this paper the above issues are investigated with the goal of assessing effects of irregularity conditions, introduced by the architectural design, on the building seismic performances with the aim at not forbidding the designer ambitions but at making him aware of the effects of his architectural choices

    Innovative techniques integrating advanced and biocomposite materials for energy and seismic retrofitting of built heritage

    Get PDF
    Cultural heritage is recognized as a driver of the sustainable development. The UNESCO’s 1972 World Heritage Convention has addressed key topics that link heritage practices to sustainability objectives. Historic buildings make up a considerable part of EU building stock, and their renovation and safeguarding require retrofit solutions that balance safety, energy efficiency, human comfort, heritage value preservation and environmental sustainability. This article tries to throw light on innovative techniques for heritage restoration based on sustainability, reuse, and recycle principles through non-invasive interventions. The work outlines the progress in the field of advanced materials obtained through the reuse of recycled materials, showing outcomes from MIRACLE research carried out by University of Florence on the development of an innovative fiber-reinforced bio-composite matrix to be applied for energy plus seismic retrofitting of existing masonry buildings built before 1945

    Confinement of Masonry Columns with Natural Lime-Based Mortar Composite: An Experimental Investigation

    Get PDF
    The paper presents the results of an experimental campaign on the confinement of masonry square columns with fiber-reinforced lime mortar (FRLM) composites made of a natural lime-based matrix. The experimental results show the effectiveness of such a composite for increasing both strength and ductility performances of strengthened columns. Predictive formulas from the literature and from the Italian guidelines CNR-DT 215/2018 do not perfectly fit the experimental outcomes and do not confirm the strength increase of the confined columns. The reason can be attributed to the very low mechanical properties of the natural matrix used to form such a composite. Therefore, considering that the use of a natural and sustainable matrix fully compatible with the masonry substrate is a fundamental requirement for strengthening masonry columns of buildings belonging to architectural heritage, an additional future effort should be made by researchers involved in this field. In particular, for a reliable prediction of the strength of masonry columns confined with composites made of natural matrices, wider experimental campaigns are necessary to refine available formulas with respect to different substrates and component materials

    Natural thermal plasters for fibre-composite matrices. Structural-energy-environmental analysis

    Get PDF
    The article presents the first results of MIRACLE research, aimed at designing, testing, and implementing innovative reinforcement systems with bio-composite matrix, with additives containing natural thermal-plasters, usable in the restoration of residential buildings created before 1945. Starting from a brief description of the properties of fibre-reinforced cement organic matrices, supported by a survey of international research aimed at developing innovative methodologies, systems, and components used to improve the energy and mechanical performances of listed historic buildings, the most suitable thermal-plasters will be analysed (among those existing on the Italian market), identifying the performance characteristics both in terms of mechanic and thermal and environmental sustainability

    INNOVATIVE AND ECO-COMPATIBLE MATERIALS FOR THE REGENERATION OF THE HISTORICAL BUILDINGS LOCATED IN THE MED AREA

    Get PDF
    corecore