312 research outputs found

    Microencapsulated diets to improve bivalve shellfish aquaculture.

    Get PDF
    Aquaculture is the fastest growing food sector and feeds over 3 billion people. Bivalve shellfish aquaculture makes up 25% of global aquaculture production and is worth annually US$19 billion, but continued growth is currently limited by suboptimal diets and limited tools for disease control. New advances in microencapsulation technology could provide an effective way to overcome these biological limitations. This study demonstrated that a new formulation of microencapsulated diet known as BioBullets could be ingested by a commercially farmed bivalve; the blue mussel Mytilus edulis. Microparticles could be captured by mussels with similar efficiency to natural foods. Microparticles too large for ingestion were rejected in pseudofaeces. Microparticles were successfully ingested and broken down by the gut. Further work is needed to assess the impact of BioBullets diets on bivalve growth. There is now an exciting opportunity to tailor the composition of microencapsulated diets for specific applications to improve production output and efficiency in the commercial bivalve shellfish industry

    The Importance of the Human Footprint in Shaping the Global Distribution of Terrestrial, Freshwater and Marine Invaders

    Get PDF
    Human activities such as transport, trade and tourism are likely to influence the spatial distribution of non-native species and yet, Species Distribution Models (SDMs) that aim to predict the future broad scale distribution of invaders often rely on environmental (e.g. climatic) information only. This study investigates if and to what extent do human activities that directly or indirectly influence nature (hereafter the human footprint) affect the global distribution of invasive species in terrestrial, freshwater and marine ecosystems. We selected 72 species including terrestrial plants, terrestrial animals, freshwater and marine invasive species of concern in a focus area located in NW Europe (encompassing Great Britain, France, The Netherlands and Belgium). Species Distribution Models were calibrated with the global occurrence of species and a set of high-resolution (9×9 km) environmental (e.g. topography, climate, geology) layers and human footprint proxies (e.g. the human influence index, population density, road proximity). Our analyses suggest that the global occurrence of a wide range of invaders is primarily limited by climate. Temperature tolerance was the most important factor and explained on average 42% of species distribution. Nevertheless, factors related to the human footprint explained a substantial amount (23% on average) of species distributions. When global models were projected into the focus area, spatial predictions integrating the human footprint featured the highest cumulative risk scores close to transport networks (proxy for invasion pathways) and in habitats with a high human influence index (proxy for propagule pressure). We conclude that human related information–currently available in the form of easily accessible maps and databases—should be routinely implemented into predictive frameworks to inform upon policies to prevent and manage invasions. Otherwise we might be seriously underestimating the species and areas under highest risk of future invasions.The first author would like to thank the constructive comments and advice on the manuscript made by Drs Montserrat Vilà, Juan Pedro González-Varo and Pablo González-Moreno.Peer reviewe

    Making the best of a pest: the potential for using invasive zebra mussel (Dreissena polymorpha) biomass as a supplement to commercial chicken feed.

    Get PDF
    Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg(-1)), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.This research project was funded through a Natural Environment Research Council CASE studentship to CM and DCA grant number [NE/H018697/1] in partnership with Anglian Water.This is the final published version. It's also available from Springer at http://link.springer.com/article/10.1007%2Fs00267-014-0335-6

    Fouling of European freshwater bivalves (Unionidae) by the invasive zebra mussel (Dreissena polymorpha)

    Get PDF
    1. The zebra mussel (Dreissena polymorpha) is well known for its invasive success and its ecological and economic impacts. Of particular concern has been the regional extinction of North American freshwater mussels (Order Unionoida) on whose exposed shells the zebra mussels settle. Surprisingly, relatively little attention has been given to the fouling of European unionoids. 2. We investigated interspecific patterns in fouling at six United Kingdom localities between 1998 and 2008. To quantify the effect on two pan-European unionoids (Anodonta anatina and Unio pictorum), we used two measures of physiological status: tissue mass : shell mass and tissue glycogen content. 3. The proportion of fouled mussels increased between 1998 and 2008, reflecting the recent, rapid increase in zebra mussels in the U.K. Anodonta anatina was consistently more heavily fouled than U. pictorum and had a greater surface area of shell exposed in the water column. 4. Fouled mussels had a lower physiological condition than unfouled mussels. Unlike tissue mass : shell mass ratio, tissue glycogen content was independent of mussel size, making it a particularly useful measure of condition. Unio pictorum showed a stronger decline in glycogen with increasing zebra mussel load, but had a broadly higher condition than A. anatina at the time of study (July). 5. Given the high conservation status and important ecological roles of unionoids, the increased spatial distribution and fouling rates by D. polymorpha in Europe should receive more attention.Malacological Society of London Research Grant was provided to FP to support this study. Howard Baylis and Barrie Fuller (Zoology Department, University of Cambridge) facilitated the glycogen assays. Many thanks to Philine zu Ermgassen, Rebecca Mant, Anna McIvor, Nicole Spann and Alexandra Zieritz for field and lab assistance. Special thanks to David Strayer, Alan Hildrew and an anonymous referee for helpful suggestions on the manuscript

    Ship traffic connects Antarctica's fragile coasts to worldwide ecosystems.

    Get PDF
    Antarctica, an isolated and long considered pristine wilderness, is becoming increasingly exposed to the negative effects of ship-borne human activity, and especially the introduction of invasive species. Here, we provide a comprehensive quantitative analysis of ship movements into Antarctic waters and a spatially explicit assessment of introduction risk for nonnative marine species in all Antarctic waters. We show that vessels traverse Antarctica's isolating natural barriers, connecting it directly via an extensive network of ship activity to all global regions, especially South Atlantic and European ports. Ship visits are more than seven times higher to the Antarctic Peninsula (especially east of Anvers Island) and the South Shetland Islands than elsewhere around Antarctica, together accounting for 88% of visits to Southern Ocean ecoregions. Contrary to expectations, we show that while the five recognized "Antarctic Gateway cities" are important last ports of call, especially for research and tourism vessels, an additional 53 ports had vessels directly departing to Antarctica from 2014 to 2018. We identify ports outside Antarctica where biosecurity interventions could be most effectively implemented and the most vulnerable Antarctic locations where monitoring programs for high-risk invaders should be established
    • …
    corecore