691 research outputs found

    Description and validation of a novel real-time RT-PCR enterovirus assay

    Get PDF
    Journal ArticleEnteroviruses are a leading cause of aseptic meningitis in adult and pediatric populations. We describe the development of a real-time RT-PCR assay that amplifies a small target in the 5' nontranslated region upstream of the classical Rotbart enterovirus amplicon. The assay includes an RNA internal control and incorporates modified nucleotide chemistry

    Scale-Invariant Random Spatial Networks

    Full text link
    Real-world road networks have an approximate scale-invariance property; can one devise mathematical models of random networks whose distributions are {\em exactly} invariant under Euclidean scaling? This requires working in the continuum plane. We introduce an axiomatization of a class of processes we call {\em scale-invariant random spatial networks}, whose primitives are routes between each pair of points in the plane. We prove that one concrete model, based on minimum-time routes in a binary hierarchy of roads with different speed limits, satisfies the axioms, and note informally that two other constructions (based on Poisson line processes and on dynamic proximity graphs) are expected also to satisfy the axioms. We initiate study of structure theory and summary statistics for general processes in this class.Comment: 56 page

    Autophagy gene expression profiling identifies a defective microtubule-associated protein light chain 3A mutant in cancer.

    Get PDF
    The cellular stress response autophagy has been implicated in various diseases including neuro-degeneration and cancer. The role of autophagy in cancer is not clearly understood and both tumour promoting and tumour suppressive effects of autophagy have been reported, which complicates the design of therapeutic strategies based on targeting the autophagy pathway. Here, we have systematically analyzed gene expression data for 47 autophagy genes for deletions, amplifications and mutations in various cancers. We found that several cancer types have frequent autophagy gene amplifications, whereas deletions are more frequent in prostate adenocarcinomas. Other cancer types such as glioblastoma and thyroid carcinoma show very few alterations in any of the 47 autophagy genes. Overall, individual autophagy core genes are altered at low frequency in cancer, suggesting that cancer cells require functional autophagy. Some autophagy genes show frequent single base mutations, such as members of the ULK family of protein kinases. Furthermore, we found hotspot mutations in the arginine-rich stretch in MAP1LC3A resulting in reduced cleavage of MAP1LC3A by ATG4B both in vitro and in vivo, suggesting a functional implication of this gene mutation in cancer development

    Dynamic critical exponents of Swendsen-Wang and Wolff algorithms by nonequilibrium relaxation

    Full text link
    With a nonequilibrium relaxation method, we calculate the dynamic critical exponent z of the two-dimensional Ising model for the Swendsen-Wang and Wolff algorithms. We examine dynamic relaxation processes following a quench from a disordered or an ordered initial state to the critical temperature T_c, and measure the exponential relaxation time of the system energy. For the Swendsen-Wang algorithm with an ordered or a disordered initial state, and for the Wolff algorithm with an ordered initial state, the exponential relaxation time fits well to a logarithmic size dependence up to a lattice size L=8192. For the Wolff algorithm with a disordered initial state, we obtain an effective dynamic exponent z_exp=1.19(2) up to L=2048. For comparison, we also compute the effective dynamic exponents through the integrated correlation times. In addition, an exact result of the Swendsen-Wang dynamic spectrum of a one-dimension Ising chain is derived.Comment: 13 pages, 6 figure

    The medical elective: A unique educational opportunity

    Get PDF
    No Abstract

    Duplication-divergence model of protein interaction network

    Full text link
    We show that the protein-protein interaction networks can be surprisingly well described by a very simple evolution model of duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter, the probability to retain a duplicated link during divergence. When this parameter is large, the network growth is not self-averaging and an average vertex degree increases algebraically. The lack of self-averaging results in a great diversity of networks grown out of the same initial condition. For small values of the link retention probability, the growth is self-averaging, the average degree increases very slowly or tends to a constant, and a degree distribution has a power-law tail.Comment: 8 pages, 13 figure

    Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices

    Full text link
    We develop a scaling theory for KPZ growth in one dimension by a detailed study of the polynuclear growth (PNG) model. In particular, we identify three universal distributions for shape fluctuations and their dependence on the macroscopic shape. These distribution functions are computed using the partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for publication in PR

    Condensation of the roots of real random polynomials on the real axis

    Full text link
    We introduce a family of real random polynomials of degree n whose coefficients a_k are symmetric independent Gaussian variables with variance = e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly the mean number of real roots for large n. As \alpha is varied, one finds three different phases. First, for 0 \leq \alpha \sim (\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase where grows algebraically with a continuously varying exponent, \sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for \alpha > 2, one finds a third phase where \sim n. This family of real random polynomials thus exhibits a condensation of their roots on the real line in the sense that, for large n, a finite fraction of their roots /n are real. This condensation occurs via a localization of the real roots around the values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure

    Random tree growth by vertex splitting

    Full text link
    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalises the preferential attachment model and Ford's α\alpha-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
    corecore