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b a c k g r o u n d : Enteroviruses are a leading cause of asep­
tic meningitis in adult and pediatric populations. We 
describe the development o f a real-time RT-PCR assay 
that amplifies a small target in the 5' nontranslated 
region upstream o f the classical Rotbart enterovirus 
amplicon. The assay includes an RNA internal control 
and incorporates modified nucleotide chemistry.

m e t h o d s : We evaluated the performance character­
istics of this design and performed blinded parallel 
testing on clinical samples, comparing the results 
with a commercially available RT-PCR assay (Pan­
Enterovirus OligoDetect kit) that uses an enzyme 
immunoassay-like plate end detection.

r e su l t s : We tested 778 samples and found 14 dis­
crepant samples between the 2 assays. O f these, the 
real-time assay detected 6 samples that were nega­
tive by the OligoDetect kit, 5 of which were confirmed 
as positive by sequence analysis using an alternative 
primer set. Eight discrepant samples were positive by 
the OligoDetect kit and real-time negative, with 6 con­
firmed by sequencing. Overall, detection rates of 97% 
and 96% were obtained for the OligoDetect kit and 
real-time assays, respectively. Sequence analysis re­
vealed the presence o f a number of single nucleotide 
polymorphisms in the targeted region. The compara­
tive sensitivities of the 2 assays were equivalent, with 
the limit o f detection for the real-time assay deter­
mined to be approximately 430 copies per milliliter in 
cerebrospinal fluid.

c o n c l u s io n s : This novel real-time enterovirus assay is 
a sensitive and suitable assay for routine clinical testing. 
The presence o f single nucleotide polymorphisms can 
affect real-time PCR assays.
© 2007 American Association for Clinical Chemistry

Human enteroviruses belong to the Picornaviridae 
family and include more than 100 serotypes divided 
among 5 groups (poliovirus, human enterovirus A, hu­
man enterovirus B, human enterovirus C, and human 
enterovirus D) (1). Human enterovirus (HEV)4 infec­
tions are the leading cause o f aseptic meningitis in pe­
diatric and adult populations and have been associated 
with severe disease such as myocarditis, encephalitis, 
and paralytic poliomyelitis (2). Because the symptoms 
of viral and bacteria] meningitis are very similar but 
have different treatment regimens, a rapid, sensitive, 
and specific test is needed to identify the infective 
agent. Rapid and accurate diagnosis o f HEV infection 
can reduce use o f antibiotics, duration of hospitaliza­
tion, and financial cost (3, 4).

RT-PCR has become the diagnostic methodology 
o f choice due to its sensitivity and rapid turnaround 
time, allowing significant improvement in patient 
care and management. A majority of molecular HEV 
assays target the highly conserved region within the 
5' nontranslated region (NTR) described by Rotbart 
et al. (5 -10). The RT-PCR primer and probe target 
sequences within this region, although not perfectly 
homologous, are to a great extent conserved among 
the human enteroviruses (1 1 ). With real-time RT-PCR 
testing, however, false negative results can occur when 
single nucleotide polymorphisms (SNPs) located be­
neath the probe reduce or prevent probe hybridization 
and fluorescence during detection (1 2 -1 5 ).

We describe the development o f a novel real-time 
HEV assay. This assay amplifies and detects a con­
served region upstream of the Rotbart amplicon by 
using primers containing degenerate and modified 
bases and a minor groove binder (MGB)-conjugated 
hybridization probe. A noncompetitive RNA internal 
control (IC) consisting of lyophilized armored RNA 
was incorporated into the real-time assay and coex­
tracted in each sample to monitor nucleic acid extrac­
tion and RT-PCR inhibition. We tested the analytical
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Novel Real-Time Enterovirus Assay

Table 1. Enterovirus and internal control primers and probes.

Primers and probes Sequence
Nucleotide
positions3

Rotbart modified design
EV1 5 '-GGCCCCTGAATGCGGCTAAT-3' 454-473a
EV2 5 '-CAATTGTCACCATAAGCAGCCA-3' 583-604
Probe 5'-MGB-NFQ-CTTTGGGTGTCCGTGT-FAM-3' 549-564
Modified probe 5'-MGB-NFQ-ACTT*T*GGGZ*GZ*CCGT*GT*-FAM-3' 548-564

Upstream design
EV-F 5'-AATAAATCATAAGAAGAGYCZ*ATTGAGCTA-3' 422-439a
EV-R 5'-AATAAATCATAAGGA*TTRGCCGCA*TTC-3' 461-475
Probe 5'-MGB-FAM-TCCGGCCCCTGAATGC-NFQ-3' 451-466

RNA internal control
IC forward 5 '-CCA*TCAAA*GTCGA*GGTGCCTAAAGTG-3' 1513—1538b
IC reverse 5 '-ACG A ACGCCATGCGGCTACAGG A AGCTC-3' 1563-1590
IC probe 5'-MGB-PY-G*TG*TTG*G*TG*G*TG*TAG*AG*C-NFQ-3' 1549-1566

Underlined nucleotides indicate 5' tails. ■ Cox B5 (acc. no. X67706).b ms2 Phage (acc. no. NC 001417). NFQ, nonfluorescent quencher; T* 
super A base, super G base (Nanogen); V, neutral base (Nanogen).

A*, G*, super T base,

performance o f this novel design and compared it to 
the Pan-Enterovirus OligoDetect kit using patient 
samples submitted to ARUP Laboratories during 2006. 
In addition, we discuss a hybridization probe-based 
assay targeting the highly conserved regions described 
by Rotbart et al. (5) and present data illustrating the 
effect o f unforeseen SNPs.

Materials and Methods

VTRAL RNA EXTRACTION
We used 778 patient specimens submitted for mo­
lecular HEV testing at ARUP Laboratories from 
March 2006 through August 2006. Samples o f them 
were analyzed concurrently using the Pan-Enterovirus 
OligoDetect kit (cat. no. CWO-PCR; Millipore) and 
real-time RT-PCRassays. All samples used for verifica­
tion were deidentified and blinded according to in­
stitutional protocols. We also tested an additional 27 
different known serotypes from clinical isolates by 
use o f the real-time platform. We extracted 70 /zL of 
each sample in duplicate using the Qiagen BioRobot 
9604 and eluted the nucleic acids in 86 /zL AVE buf­
fer. The RNA IC, consisting of quantified and lyophi- 
lized hepatitis C virus (HCV)-armored RNA prepared 
as described (16 ), was added to the lysis buffer be­
fore extraction to yield a final concentration o f 300 
copies/reaction.

RT-PCR ENZYME IMMUNOASSAY
We performed RT-PCR on duplicate RNA extracts us­
ing OneStep RT-PCR kit (Qiagen) and biotinylated

PCR primers in the Pan-Enterovirus OligoDetect kit 
as described (17). After RT-PCR, the biotinylated en­
terovirus amplicon was denatured, hybridized to the 
enzyme immunoassay (EIA) plate-bound probe, and 
detected according to the manufacturer’s recommen­
dations. Briefly, 10 /zL amplicon was transferred to the 
EIA reaction wells, denature, and allowed to hybridize 
in the presence o f hybridization buffer for 30 min at 
37 °C. After a wash step, 100 /xL streptavidin/horse- 
radish peroxidase conjugate was added and incubated 
for 30 min at 37 °C followed by a 2nd wash step. We 
added 100 /zL tetramethylbenzidine substrate and al­
lowed the color change to develop for 10 min at 37 °C 
before adding 100 /xL stop solution. The absorbance 
was measured at 450 nm on a plate reader.

REAL-TIME RT-PCR ASSAY
The initial real-time design used primers EV1 and 
EV2, which are similar to those described by Rotbart 
et al. (5) and identical to those in the OligoDetect 
kit, to generate a 151-bp amplicon. The FAM-labeled 
Eclipse™ probe (Nanogen), 5'-CTTTGGGTGTCCGT- 
GT-3', was used for amplicon detection. Primer and 
probe sequences are listed in Table 1. Each 25-/zL reaction 
contained 10 /zL viral RNA, 600 nmol/L EV1 primer, 
6 /zmol/L EV2 primer, and 200 nmol/L EV probe and was 
amplified using the OneStep RT-PCR Kit (Qiagen) ac­
cording to the manufacturer’s recommendations. We 
performed the real-time RT-PCR assay on the Applied 
Biosystems 7900HT using cycling conditions described 
(17) with the exception of 50 cycles in place of 40 to effi­
ciently detect low positive samples. Melting curve analysis
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consisted of 15-s holds at 95 °C, 45 °C, and 95 °C with 
the ramp rate between 45 °C and 95 °C set to 5%. Fluo­
rescence signal was acquired at the annealing step of each 
cycle during amplification and throughout the final ramp 
between 45 °C and 95 °C.

For the novel real-time design, we amplified viral 
RNA using the QuantiTect RT-PCR Kit (Qiagen) and 
primers and probes (Nanogen) listed in Table 1. Each 
50-ju.I, reaction contained 20 /zL RNA, 250 nmol/L 
EV-F primer, 1.0 /zmol/L EV-R primer, and 200 nmol/L 
EV probe. A subset of samples was analyzed with the EV-F 
primer at 1.0 /zmol/L. The IC primers and probe, at 50 
and 200 nmol/L, respectively, amplify and detect a 78-bp 
region of the ms2 coat protein gene. This gene is pack­
aged, along with a portion of a nonbacteriophage gene 
(in this instance HCV), inside the ms2 bacteriophage 
coat proteins as a recombinant RNA. The hybridization 
probes contain a 5' MGB and fluorophore with a 3' 
quencher. These probes are not hydrolyzed and fluoresce 
only when bound. The EV probe contained a FAM label, 
whereas the IC probe was labeled with PY559 dye.

We programmed the Applied Biosystems 7900HT 
with the following RT-PCR protocol: 10 min at 20 °C 
for 1 cycle, 30 min at 50 °C for 1 cycle, and 15 min at 
95 °C for 1 cycle, followed by 50 cycles of a 3-step PCR 
(15 s at 95 °C, 30 s at 56 °C, and 30 s at 76 °C). The 
amplification program was followed by a melting- 
curve analysis consisting of 15-s holds at 95 °C, 45 °C, 
and 95 °C. The ramp rate was set at 100% for all steps 
except the final ramp between 45 °C and 95 °C, which 
was set to 5%. Fluorescent signal was acquired at the 
annealing step o f each cycle during amplification and 
throughout the final ramp between 45 °C and 95 °C.

SEQUENCING
Discrepant analysis included sequencing a 284-bp re­
gion o f the 5' NTR that spanned the amplicons gener­
ated by both assays. We performed the RT-PCR reac­
tion using the Qiagen OneStep RT-PCR kit according 
to the manufacturer’s instructions. We added 10 /zL 
RNA to 15 /zL master mix containing 400 /zmol/L 
dNTPs, 0.5 units heat-labile uracil-DNA glycosylase, 
and 800 nmol/L of the forward (5'-GGCTGCGTTG- 
GCGGCCTGCC-3') and reverse (5'-CACCGGATG- 
GCCAATCCAAT-3') primers. Cycling conditions were
10 min at 20 °C for 1 cycle, 30 min at 50 °C for 1 cycle, 
15 min at 95 °C for 1 cycle, and 50 cycles of a 3-step PCR 
(30 s at 95 °C, 30 s at 56 °C, and 30 s at 72 °C), followed by 
a 10-min cycle at 72 °C.

EVALUATION OF SEQUENCE VARIATION IN PRIMER TARGETS
We generated amplicons representing the genomic tar­
get sequence containing known mismatches with the 
upstream primer o f the real-time assay by using mod­
ified upstream primers to amplify a plasmid containing

a 284-bp region o f the coxsackie B5 virus. Each modi­
fied primer contained a substituted nucleotide at the 
desired position to create the mismatch. We then 
cloned the amplicons into the pCRII vector (Invitro- 
gen) and confirmed the presence o f the nucleotide 
mismatch by sequencing. We quantified the plasmids 
spectrophotometrically and amplified 2-fold dilutions 
of each plasmid at the limit o f detection in duplicate 
and compared them to a plasmid containing no 
mismatches.

LIMIT OF DETECTION AND SPECIFICITY
We used 10-fold dilutions o f a plasmid, consisting o f a 
284-bp region o f the coxsackie B5 virus cloned into the 
pCRII TOPO vector (Invitrogen), to generate a calibra­
tion curve to quantify an enterovirus-positive control. 
The limit of detection was determined by performing 5 
or 6 2-fold serial dilutions o f the positive control ma­
terial, from 140 to 2 copies per reaction, in cerebrospi­
nal fluid, serum, and plasma samples before extraction 
and amplification in duplicate. The lowest dilution de­
tected in both replicates was defined as the limit of 
detection.

Specificity was determined by assaying nucleic ac­
ids from the following RNA viruses: rhinovirus 3, rhi- 
novirus 7, West Nile, influenza A, influenza B, RSV, 
and norovirus genogroups I and II. Also tested were 
DNA viruses HSV, VZV, CMV, EBV, HHV6 A and B, 
BK, and adenovirus, as well as human genomic DNA.

Results

Preliminary attempts at developing a real-time RT- 
PCR assay for HEV involved using the same primer 
sequences in the custom Pan-Enterovirus OligoDetect 
assay along with an Eclipse™ real-time probe contain­
ing a 5' MGB and quencher and a 3' fluorophore. Dur­
ing side-by-side clinical testing, 6 of 37 positive samples 
failed to generate amplification curves but produced 
distinct melting curves approximately 7 °C lower than 
expected (Fig. 1 A). Sequence analysis of these samples 
identified a T >  A SNP beneath the probe at nucleotide 
position 556 or 558. The probe was redesigned to ac­
commodate these SNPs, using modified neutral base 
chemistry at these 2 nucleotide positions. These neutral 
bases have the capacity to complement any nucleotide. 
Because incorporation of neutral bases decreases the 
melting temperature (Trn) o f an oligonucleotide probe, 
a number o f modified Super T bases were incorporated 
to compensate for this destabilizing effect. Each Super 
T base increases the probe Tn, approximately 1 °C. Am­
plification curves and uniform melting curves were 
subsequently obtained for these polymorphic samples 
(Fig. 1B). After further optimization and incorporation
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Fig. 1. (A), Melting curves from the initial real-time assay showing the atypical melting peak at 54 °C for a number 
of clinical HEV-positive samples.
These samples did not produce amplification curves and contained a single nucleotide polymorphism beneath the probe. (B), 
Melting curves from 6 positive samples that produced atypical melting peaks as shown in (A), as well as the HEV-positive control 
generated using the modified Eclipse™ probe containing neutral bases.

continued on page 410

of the RNA IC, however, the assay was not as sensitive 
as the Pan-Enterovirus assay (data not shown).

A novel real-time HEV assay was designed using 
primers and probes that amplify and detect a 54-bp 
target upstream of the traditional Rotbart enterovirus 
amplicon currently used in many real-time and non- 
real-time HEV assays (Fig. 2). Preliminary experiments 
with this design also identified a number o f discrepant 
samples that were positive by the Pan-Enterovirus as­
say but not detected by the real-time assay. Sequence 
results for the discrepant samples indicated a sequence 
variant underneath the forward primer. This design 
was modified to accommodate the polymorphic nu­

cleotide by incorporation o f a neutral base. In addition, 
both HEV primers were modified to include a 12- 
nucleotide nontemplated AT-rich tail at their 5' ends. 
Primer and probe sequences are listed in Table 1.

A breakdown of the sample types tested is listed in 
Table 2. Of the 778 samples, the real-time assay detected 
144 positive samples whereas the Pan-Enterovirus assay 
detected 147 positives. Results for 14 samples were dis­
crepant after repeat testing by both assays. Six samples 
were positive only by the real-time assay and 8 samples 
were positive only by the Pan-Enterovirus assay. As part of 
the discrepancy analysis, we interrogated the nucleotide 
sequence for the presence of SNPs that could confound
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either assay by sequencing a 284-nucleotide region of 
the 5' NTR that spans the amplicons generated by both

400 450 500 550 600 650

Fig. 2. Illustration showing the relative locations of 
the primers and probe for the 2 real-time assays 
described.
Open arrows and open box indicate the respective loca­
tions of the primers and probe for the real-time assay 
modeled after the Rotbart design. Closed arrows and 
closed box indicate primer and probe location for the newly 
described upstream design.

assays. Five of the 6 real-time positives could be se­
quenced, with 1 sample containing a SNP (T>C) under 
the 3' terminal base of the Pan-Enterovirus reverse 
primer and 1 sample containing a 2-nucleotide mismatch 
at the 5' terminal end of the same primer. Six of the 8 
Pan-Enterovirus positives could be sequenced, with 4 
samples containing SNPs beneath the upstream real-time 
primer (Fig. 3).

To determine the effects of these SNPs in the real­
time assay, separate amplicons representing the ge­
nomic target sequence containing each polymorphism 
were generated using modified primers that contained 
the desired nucleotide substitution. Amplicons were 
cloned, and 2-fold serial dilutions of each plasmid at 
the limit of detection were made and amplified in du­
plicate. The A >G  mismatch at the 4th position of the 
genomic target and the C >T  mismatch at the 11th po­
sition of the target gave modest decreases in sensitivity 
of 4- and 6-fold, respectively, compared to a plasmid
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Table 2. Breakdown of the total number of true 
positive and negative samples tested for each 

sample type.

Cerebrospinal
fluid Plasma Serum Other Total

Positive 144 6 0 0 150
Negative 484 133 5 6 628
Total 628 139 5 6 778

The number of true positives was determined by using sequence analysis as 
the tiebreaker when there was a discrepancy between the Pan-Enterovirus 
OligoDetect and real-time assay. “Other’' includes these samples: 1 peri­
cardial fluid, 1 tissue, 1 pleural fluid, and 3 of unknown type.

that contained no mismatches. The G >A  mismatch at 
the terminal position o f the upstream primer yielded a 
more notable 12-fold decrease in sensitivity.

An additional 27 clinical isolates, serotyped by se­
rum neutralization, were successfully analyzed using 
the real-time assay and generated uniform melting 
peaks (Fig. 4). These serotypes included coxsackie A 
virus 9 and 16; coxsackie B viruses 1, 3, 4, 5, and 6; 
echoviruses 2, 3, 4, 5, 6, 7, 11, 15, 16, 18, 20, 21, 24, 25, 
27,30, and 31; enterovirus 71; and polioviruses 2 and 3.

The detection limits of the 2 HEV assays, mea­
sured by extracting and amplifying 2-fold serial dilu­
tions of enterovirus-positive control material, were 
equivalent as judged by the presence of a crossing 
threshold and amplification curve in the real-time 
assay and absorbance above the background in the 
Pan-Enterovirus assay. For cerebrospinal fluid and se­
rum, the limit of detection in the real-time assay was 7 
copies/reaction (430 000 copies/L), and for plasma, 18 
copies/reaction (1 110 000 copies/L).

Specificity was determined by amplifying nucleic 
acids from a number of RNA and DNA viruses; no 
cross-reactivity was observed.

Discussion
Real-time RT-PCR has become a standard tool for di­
agnostic testing because of its rapid turnaround time, 
relatively low risk of contamination, and ease of use. 
Because fluorescence acquisition for most real-time 
methodologies is based on the hybridization of a 
probe to its complimentary target, however, there is a 
greater possibility o f inadvertently missing a positive 
sample owing to nucleotide mismatches under the 
probe. The influence of an unknown single nucleotide 
polymorphism (SNP) on a specific real-time assay is 
not always obvious, but the number and position of 
SNPsbeneath areal-time probe can determine whether 
an assay is susceptible to a false-negative result or mis- 
quantification (12, 15, 18-23  ). Another potential dis­
advantage of real-time PCR is the intrinsic fluorescent 
background that can affect the ability to detect low pos­
itives that generate weak fluorescent signals. This 
background fluorescence is contingent on the instru­
mentation, detection chemistry, and dye and quencher 
selection used (2 4 -2 6 ).

The majority o f real-time enterovirus assays use 
the highly conserved regions o f the 5' NTR described 
by Rotbart et al. ( 5 ) as primer and probe binding sites. 
Using these regions, we noted a number of HEV- 
positive clinical samples that failed to produce ampli­
fication curves but were identified by atypical melting 
peaks. Sequencing o f these samples confirmed the 
presence of 2 different SNPs beneath the probe that 
reduced its ability to efficiently bind during the anneal­
ing stage of the PCR. Melting-curve analysis was per­
formed at lower temperature, however, which allowed 
probe hybridization and fluorescence detection even 
in the presence of the SNP. Although these SNPs 
may confound real-time assays, the Pan-Enterovirus 
OligoDetect assay could tolerate them because the hy­
bridization step, where the single-stranded amplicon is 
captured by the plate-bound probe, is performed at low

GAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCC C o n s e n s u s
..................C ................... A A ............. A ................................................................................ ....(9 )
A ...................................... A .........................................................................................................( 1 0 )
...................................... G A C .................................................................................................. ....(7 )
...................................... G ............................................................................................................(5 )
..............................................................T ................................................................................ ....( 1 4 )
..............................................................T ................................................................................ ....(4 )

Fig. 3. Sequence alignment indicating the position of the 4 single nucleotide polymorphisms beneath the forward 
primer (underlined) of the 6 samples that were negative by real-time assay.
Two samples did not contain polymorphisms beneath the forward primer. • indicates nucleotide identical to the consensus 
sequence.
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Fig. 4. Melting curves of 27 different human enterovirus isolates tested using the real-time assay, demonstrating 
uniform melting peaks.

temperature and stringency. The OligoDetect assay is 
highly sensitive, but its primary disadvantages are 
the lack o f an internal control and labor intensity. 
Fortunately, modified and neutral base chemistry 
can be used in real-time assay designs to accommo­
date SNPs while maintaining thermodynamic stabil­
ity (16, 27, 28 ).

This real-time assay amplifies and detects a 54-bp 
region o f the 5'NTR upstream of the traditional Rot­
bart amplicon. The primers used in this assay include 
degenerate and modified nucleotides to accommodate 
known sequence polymorphisms, in addition to 12 nu­
cleotide nontemplated tails on their 5' ends, which in­
crease PCR efficiency and quantity of product gener­
ated. In addition, target detection was achieved using 
newly described Pleiades hybridization probes that con­
tain a 5' MGB and fluorophore and a 3' nonfluorescent

quencher. These probes have lower backgrounds and a 
higher signal-to-noise ratio than other hybridization 
probes (26 ). The MGB allows the design and use of 
shorter probes while maintaining a higher melting tem­
perature, which maybe an advantage in designing probes 
for small conserved regions (29, 30 ). Moreover, because 
the hybridization probes are not hydrolyzed during the 
reaction, they remain available for melting-curve analysis 
and amplification product confirmation. As demon­
strated in this study, the ability to confirm results by melt­
ing curves is particularly valuable and may aid in identi­
fying potential false-negative results caused by SNPs 
beneath real-time probes.

An excellent correlation between the real-time 
assay and the Pan-Enterovirus OligoDetect assay was 
observed, with only 14 total discrepant samples of 778 
(6 from the Pan-Enterovirus assay and 8 from the real­
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time assay). Sequencing of discrepant samples revealed 
the presence of 3 different SNPs beneath the forward 
real-time primer and 2 beneath the reverse OligoDetect 
primer. Studies performed to determine the effect of 
the 3 SNPs in the real-time assay indicated that the 2 
internal nucleotide mismatches had a modest 4- to 
6-fold decrease in assay sensitivity, whereas the SNP at 
the terminal 3' end of the forward primer had an ap­
proximate 12-fold reduction in sensitivity. The re­
maining discrepant samples between the 2 assays may 
be due to subtle variations in assay sensitivities, since 
these samples did not contain any sequence variants.

This study demonstrates how using modified nu­
cleotide chemistries in primers and hybridization 
probes can reduce the impact o f SNPs on real-time

assays. It also highlights the inadequacy of current 
databases routinely used in assay designs and is a re­
minder of the necessity o f an extensive clinical 
validation.
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