228 research outputs found

    COVID-19 Pandemic Preparedness in a UK Tertiary and Quaternary Children's Hospital: Tales of the Unexpected

    Get PDF
    We describe the adaptive coping strategies required in the management of a heterogeneous group of SARS-CoV-2 paediatric patients. The diverse range of presentations, presenting in distinct phenotypic waves, exemplified the importance of preparedness for the unknown. Lessons learned will be essential in planning for a likely second wave of SARS-CoV-2

    Energy saving potential of climate adaptive building shells - Inverse modelling of optimal thermal and visual behaviour

    Get PDF
    In common building design practice energy performance calculation programs or, in the best case, dynamic building simulation programs are used to optimize the properties of a building shell. However, even with use of dynamic building simulation programs adaptive behaviour, in terms of changing building shell properties, is not easy to simulate since many inputs - like insulation values, window ratio, etc. are ‘fixed’ values. The result of these optimization calculations is therefore rather an optimization in fixed design values then a set of ideal optimal adaptive behaviour building shell parameters. In the Dutch FACET project (Dutch acronym: ‘Adaptive façade technology for increased comfort and lower energy use in the future’) a quest for the ideal building shell with adaptive, variable properties is performed. Since the standard way of simulating does not allow fully adaptive building shell behaviour, a completely new, inverse modelling approach is set up. The key question here is: "What would be the ideal, dynamic properties of a building shell to get the desired indoor climate at variable outdoor climate conditions?" By reversing the design approach, and using inverse modelling, a set of ideal, hypothetical building shell parameters is computed for different climate conditions at various time steps (seasons, daynight, instantaneous), for different building categories like offices, schools and dwellings. This ‘ideal’ adaptive behaviour will make it possible to maximize indoor comfort and to minimize energy use for heating, cooling, ventilation and lighting. It does not start with having existing concepts in mind, but instead focuses on clarifying the theoretical potential of adaptive architecture. In the TRNSYS and Radiance simulations the building shell input is given as a black box, with a wide range of possible (combinations of) thermal and visual properties. Technologies and materials to meet the requirements can be more futuristic but also very ‘down to earth’. Partial solutions are already available, in low or high tech solutions, such as smart glazing, variable vacuum insulation, insulating window covering, etc. Further technology development is expected to be desired to fully meet the ideally adaptive behaviour requirements. Based on state of the art ‘adaptive temperature’ criteria optimal thermal behaviour was simulated in a first step. This gives the energy saving potential for an optimal thermal adaptive building shell. In a second step the computed optimal daylight characteristics of the building shell is given by optimizing visual comfort in Radiance. In a next step, both visual and thermal behaviour is optimized in an integral way, using a multi objective criteria approach. This paper describes the thermal and visual simulation optimization results of the FACET project. Preliminary results show that optimal adaptive building shell properties can reduce the total heating and cooling demand by a factor 10 compared to state of the art new built offices. For the Netherlands this means a factor 3 compared to the very efficient passive house technology. In the case of offices the heat demand is practically eliminated and the cooling demand can be reduced significantly by a factor two. The resulting extremely low energy demand means that less effort is needed to enable zero energy, or energy producing buildings in the future

    Becoming productive 21st century citizens: A systematic review uncovering design principles for integrating community service learning into higher education courses

    Get PDF
    Background: To prepare students to become productive 21st century citizens, universities have to be more engaged with society. Shifting towards community service learning (CSL) enables students to participate in, and reflect on, services that both benefit the public and also contribute to their own learning. There has been considerable research conducted on the improved student competencies, both academic and personal, resulting from CSL. There is, however, no consensus on how to integrate CSL into courses successfully, owing to the diverse contextual factors that influence implementation. Purpose: By means of conducting a review, this study aimed to establish general design principles to help guide course coordinators in implementing CSL in their academic courses. Design and methods: A systematic review was conducted of articles describing the implementation of CSL in academic courses within various disciplines. Implementation elements and principles were extracted from the articles and inductively grouped together, thereby identifying various design principles. Findings: Our analysis of the literature highlighted three steps that, according to the literature, are important in the implementation of CSL: (1) aligning course objectives and format; (2) establishing a relationship with the community partner; and (3) defining a reflection and evaluation strategy. We found that the nature of the design principles and specific approaches underlying these implementation steps should depend on the students’ capabilities, which include their pre-CSL experiences. Conclusion: The implementation steps and underlying design principles uncovered by this review may help guide and support course coordinators in their efforts to integrate CSL in their academic courses. The diverse range of design principles makes it possible to acknowledge students’ pre-CSL experiences and, thus, construct appropriate scaffolding, which i

    N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity

    Get PDF
    Infection of chicken coronavirus infectious bronchitis virus (IBV) is initiated by binding of the viral heavily N-glycosylated attachment protein spike to the alpha-2,3-linked sialic acid receptor Neu5Ac. Previously, we have shown that N-glycosylation of recombinantly expressed receptor binding domain (RBD) of the spike of IBV-M41 is of critical importance for binding to chicken trachea tissue. Here we investigated the role of N-glycosylation of the RBD on receptor specificity and virus replication in the context of the virus particle. Using our reverse genetics system we were able to generate recombinant IBVs for nine-out-of-ten individual N-glycosylation mutants. In vitro growth kinetics of these viruses were comparable to the virus containing the wild-type M41-S1. Furthermore, Neu5Ac binding by the recombinant viruses containing single N-glycosylation site knock-out mutations matched the Neu5Ac binding observed with the recombinant RBDs. Five N-glycosylation mutants lost the ability to bind Neu5Ac and gained binding to a different, yet unknown, sialylated glycan receptor on host cells. These results demonstrate that N-glycosylation of IBV is a determinant for receptor specificity

    Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold

    Full text link
    X-ray absorption spectra in a wide energy range around the 4d-4f excitation threshold of Gd were recorded by total electron yield from in-plane magnetized Gd metal films. Matching the experimental spectra to tabulated absorption data reveals unprecedented short light absorption lengths down to 3 nm. The associated real parts of the refractive index for circularly polarized light propagating parallel or antiparallel to the Gd magnetization, determined through the Kramers-Kronig transformation, correspond to a magneto-optical Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the study of magnetic structure and magnetization dynamics of lanthanide elements in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief Reports. Minor change

    Volumetric MRI Analysis of a Case of Severe Ventriculomegaly

    Get PDF
    We present a case of a 60-year-old male referred to a tertiary psychiatric facility for diagnostic assessment due to low mood and behavioral changes. Neurological examination of the patient was unremarkable. Magnetic resonance imaging (MRI) indicated overt ventriculomegaly with gross dilatation of lateral and third ventricles. Manual segmentation of gray matter, white matter and cerebrospinal fluid demonstrated that the patient had a ventricular volume almost 46 times greater than that of healthy volunteers in the same age range. Despite his striking degree of ventriculomegaly and cortical thinning, he presented primarily with psychiatric and cognitive complaints. These represented a major neurocognitive disorder. His behavior improved with a structured environment and routine instituted by the treating team. This is a dramatic example of the brain’s response to extreme structural remodeling. Elements of pluripotentiality may counteract degeneracy to preserve functions in cases of serious structural stress in the brain. Changes in the neural circuitry of emotional processing, and/or disruption in signaling pathways important for synaptogenesis may influence depression pathophysiology. How this circuitry is modified in cases of extreme structural stress such as long-standing overt ventriculomegaly, is unclear. This case demonstrates the ability of the brain to generate a normal phenotype despite structural changes that seem incompatible with advanced cognitive function, illustrating the substantial potential for adaptability and plasticity in the brain

    Evolution of viral variants in remdesivir-treated and untreated SARS-CoV-2-infected pediatrics patients

    Get PDF
    Detailed information on intrahost viral evolution in SARS-CoV-2 with and without treatment is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 from the upper respiratory tract of nine hospitalized children, three of whom were treated with remdesivir, revealed that remdesivir treatment suppressed viral load in one patient but not in a second infected with an identical strain without any evidence of drug resistance found. Reduced levels of subgenomic RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. These likely arose from within-host evolution, although superinfection cannot be excluded in one case. Although our dataset is small, observed sample-to-sample heterogeneity in variant frequencies across four of nine patients suggests the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalization could compromise the penetration of remdesivir into the lung, limiting the drugs in vivo efficacy, as has been observed in other lung infections

    Groene groei: Investeren in biodiversiteit en natuurlijke hulpbronnen

    Get PDF
    Dit is het eindrapport van de Taskforce Biodiversiteit en Natuurlijke Hulpbronnen. Onder de titel Groene Groei, investeren in biodiversiteit en natuurlijke hulpbronnen pleit de Taskforce voor een omslag naar een economie die gebaseerd is op de draagkracht van de aarde. Daarvoor moet in 2020 biodiversiteitverlies tot staan gebracht zijn en in 2030 onze ecologische voetafdruk zijn gehalveerd. Uiteindelijk doel voor de Taskforce Biodiversiteit en Natuurlijke hulpbronnen is een wereld met veerkrachtige ecosystemen waarin voldoende voedsel, water, energie en bescherming is voor iedereen

    Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet

    Get PDF
    Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices.1-10 Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the Néel vector in a thin film of antiferromagnetic CuMnAs9,10 which is the prominent material used in the first realization of antiferromagnetic memory chips.10 We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction11 and Xray magnetic dichroism measurements.12-14 This optical technique allows an unambiguous direct determination of the Néel vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model
    • …
    corecore