22 research outputs found

    Synthesis, Characterization and Biological Applications of Water-Soluble ZnO Quantum Dots

    Get PDF
    International audienceQuantum dots (QDs) or semiconductor nanocrystals are of great interest to fundamental studies but have also potential applications as biological probes (Medintz et al., 2005), fluorescent biosensor (Costa-Fernandez et al., 2006), light-emitting diodes (LEDs) (Lim et al. 2007), and solar cells (Robel et al., 2006). Owing to the effect of quantum confinement, QDs show exceptional physical and chemical properties such as sharp and symmetrical emission spectra, high quantum yield (QY), good photo- and chemical stability, and size-dependent emission-wavelength tunability (Bruchez et al., 1998; Chan et al., 1998). For biological labelling, the most studied QDs are the nanocrystals of CdSe and CdTe (Aldeek et al., 2008) and the corresponding core/shell structured QDs (such as CdSe/ZnS, CdTe/ZnS or CdTe/ZnTe) that are more robust against chemical degradation or photooxidation than the parent cores (Law et al., 2009). Recent findings have highlighted the acute toxicity of II-VI semiconductor QDs without an external layer of a nontoxic material on biological systems (Schneider et al., 2009; Dumas et al. 2010). This toxicity results mainly from the decomposition and release of heavy metal ions and formation of reactive oxygen species. The toxicity of cadmium is a concern that will also limit the use of these visible or near IR emitting nanocrystals, especially for applications directly related to human health. Synthesis of low toxicity QDs and especially Cd-free QDs is the most challenging aspect of working with these materials in biological and medical fields. A promising member of the Cd-free QD is ZnO. However, ZnO nanoparticles are not stable in water. This instability is related to their surface luminescent mechanisms. Water molecules are able to attack the luminescent centers on the ZnO surface and destroy them rapidly. This chapter describes the strategies that have been developed over the last years to transfer ZnO QDs in water

    Synthèse et fonctionnalisation de nanocristaux fluorescents (Quantum Dots) pour l'imagerie et la caractérisation des propriétés hydrophobes/hydrophiles de biofilms bactériens

    No full text
    Microorganisms predominantly live in communities, such as biofilms, in which extracellular polymeric substances (EPS) form the matrix and stabilize the three-dimensional structure. Hydrophobic microdomains allow the cohesiveness of these hydrophilic, polyanionic systems. The localization of these hydrophobic sites is very important to understand the variability and the reactivity of the EPS. The objective of our work was to engineer new fluorescent probes with amphiphilic or hydrophilic properties able to label the EPS. For that purpose, we have synthesized a series of fluorescent CdSe-core nanocrystals, also called Quantum Dots (QDs), modified at their periphery with hydrophilic (3-mercaptopropionic acid) or amphiphilic ligands (dihydrolipoic acid coupled to hydrophobic aminoacids like Leucine or Phenylalanine). Using confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS), we demonstrated that the functionalized QDs strongly associated with the EPS of S. oneidensis biofilms and allow imaging of these microbial communities. The location of these probes within the EPS was dependent on the surface ligand structure and on its density at the periphery of QDs. A homogeneous dispersion of hydrophilic QDs in the whole biofilm was observed, while amphiphilic QDs clusterized in the small hydrophobic domains. These new fluorescent probes will be of great use to understand the development and the reorganization of complex biological matrix like biofilms.Les biofilms sont des communautés de microorganismes emprisonnés dans une matrice de polymères organiques extracellulaires (EPS) permettant de stabiliser ces édifices tridimensionnels. La cohésion des EPS polyanioniques dans un environnement hydraté est assurée par des microdomaines hydrophobes. La localisation de ces sites hydrophobes est très importante pour comprendre la variabilité ainsi que la réactivité des EPS. Notre travail vise la synthèse de nouvelles sondes fluorescentes hydrophiles ou amphiphiles capables de marquer les EPS. Dans ce but, nous avons synthétisé une série de nanocristaux fluorescents à coeur CdSe, appelés Quantum Dots (QDs), modifiés à leur périphérie par des ligands hydrophiles (acide 3-mercaptopropionic) ou amphiphiles (acide dihydrolipoique couplé à des acides aminés hydrophobes tels que la Leucine ou la Phénylalanine). Par microscopie confocale de fluorescence et spectroscopie de corrélation de fluorescence (FCS), nous avons montré que les QDs fonctionnalisés s'associaient fortement aux EPS des biofilms de la bactérie S. oneidensis. La distribution de ces nanoparticules dans les EPS est dépendante de la structure du ligand et de sa densité à la périphérie des QDs. Une dispersion homogène des QDs hydrophiles dans l'ensemble du biofilm et une clusterisation des QDs amphiphiles dans des microdomaines hydrophobes ont notamment été observés. Les nouvelles sondes fluorescentes développées dans ce travail permettront de suivre le développement ainsi que la réorganisation de matrices biologiques complexes telles que les biofilms

    Method Development and Applications for Reduced-Risk Products

    No full text
    Cigarette smoking remains the leading cause of preventable premature death and disease in the U [...

    Synthesis and functionalization of fluorescent nanocrystals (Quantum Dots) for imaging and characterization of hydrophobic properties / hydrophilic bacterial biofilms

    No full text
    Les biofilms sont des communautés de microorganismes emprisonnés dans une matrice de polymères organiques extracellulaires (EPS) permettant de stabiliser ces édifices tridimensionnels. La cohésion des EPS polyanioniques dans un environnement hydraté est assurée par des microdomaines hydrophobes. La localisation de ces sites hydrophobes est très importante pour comprendre la variabilité ainsi que la réactivité des EPS. Notre travail vise la synthèse de nouvelles sondes fluorescentes hydrophiles ou amphiphiles capables de marquer les EPS. Dans ce but, nous avons synthétisé une série de nanocristaux fluorescents à coeur CdSe, appelés Quantum Dots (QDs), modifiés à leur périphérie par des ligands hydrophiles (acide 3-mercaptopropionic) ou amphiphiles (acide dihydrolipoique couplé à des acides aminés hydrophobes tels que la Leucine ou la Phénylalanine). Par microscopie confocale de fluorescence et spectroscopie de corrélation de fluorescence (FCS), nous avons montré que les QDs fonctionnalisés s'associaient fortement aux EPS des biofilms de la bactérie S. oneidensis. La distribution de ces nanoparticules dans les EPS est dépendante de la structure du ligand et de sa densité à la périphérie des QDs. Une dispersion homogène des QDs hydrophiles dans l'ensemble du biofilm et une clusterisation des QDs amphiphiles dans des microdomaines hydrophobes ont notamment été observés. Les nouvelles sondes fluorescentes développées dans ce travail permettront de suivre le développement ainsi que la réorganisation de matrices biologiques complexes telles que les biofilms.Microorganisms predominantly live in communities, such as biofilms, in which extracellular polymeric substances (EPS) form the matrix and stabilize the three-dimensional structure. Hydrophobic microdomains allow the cohesiveness of these hydrophilic, polyanionic systems. The localization of these hydrophobic sites is very important to understand the variability and the reactivity of the EPS. The objective of our work was to engineer new fluorescent probes with amphiphilic or hydrophilic properties able to label the EPS. For that purpose, we have synthesized a series of fluorescent CdSe-core nanocrystals, also called Quantum Dots (QDs), modified at their periphery with hydrophilic (3-mercaptopropionic acid) or amphiphilic ligands (dihydrolipoic acid coupled to hydrophobic aminoacids like Leucine or Phenylalanine). Using confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS), we demonstrated that the functionalized QDs strongly associated with the EPS of S. oneidensis biofilms and allow imaging of these microbial communities. The location of these probes within the EPS was dependent on the surface ligand structure and on its density at the periphery of QDs. A homogeneous dispersion of hydrophilic QDs in the whole biofilm was observed, while amphiphilic QDs clusterized in the small hydrophobic domains. These new fluorescent probes will be of great use to understand the development and the reorganization of complex biological matrix like biofilms

    Synthèse et fonctionnalisation de nanocristaux fluorescents (Quantum Dots) pour l'imagerie et la caractérisation des propriétés hydrophobes/hydrophiles de biofilms bactériens

    No full text
    Les biofilms sont des communautés de microorganismes emprisonnés dans une matrice de polymères organiques extracellulaires (EPS) permettant de stabiliser ces édifices tridimensionnels. La cohésion des EPS polyanioniques dans un environnement hydraté est assurée par des microdomaines hydrophobes. La localisation de ces sites hydrophobes est très importante pour comprendre la variabilité ainsi que la réactivité des EPS. Notre travail vise la synthèse de nouvelles sondes fluorescentes hydrophiles ou amphiphiles capables de marquer les EPS. Dans ce but, nous avons synthétisé une série de nanocristaux fluorescents à coeur CdSe, appelés Quantum Dots (QDs), modifiés à leur périphérie par des ligands hydrophiles (acide 3-mercaptopropionic) ou amphiphiles (acide dihydrolipoique couplé à des acides aminés hydrophobes tels que la Leucine ou la Phénylalanine). Par microscopie confocale de fluorescence et spectroscopie de corrélation de fluorescence (FCS), nous avons montré que les QDs fonctionnalisés s'associaient fortement aux EPS des biofilms de la bactérie S. oneidensis. La distribution de ces nanoparticules dans les EPS est dépendante de la structure du ligand et de sa densité à la périphérie des QDs. Une dispersion homogène des QDs hydrophiles dans l'ensemble du biofilm et une clusterisation des QDs amphiphiles dans des microdomaines hydrophobes ont notamment été observés. Les nouvelles sondes fluorescentes développées dans ce travail permettront de suivre le développement ainsi que la réorganisation de matrices biologiques complexes telles que les biofilms.Microorganisms predominantly live in communities, such as biofilms, in which extracellular polymeric substances (EPS) form the matrix and stabilize the three-dimensional structure. Hydrophobic microdomains allow the cohesiveness of these hydrophilic, polyanionic systems. The localization of these hydrophobic sites is very important to understand the variability and the reactivity of the EPS. The objective of our work was to engineer new fluorescent probes with amphiphilic or hydrophilic properties able to label the EPS. For that purpose, we have synthesized a series of fluorescent CdSe-core nanocrystals, also called Quantum Dots (QDs), modified at their periphery with hydrophilic (3-mercaptopropionic acid) or amphiphilic ligands (dihydrolipoic acid coupled to hydrophobic aminoacids like Leucine or Phenylalanine). Using confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS), we demonstrated that the functionalized QDs strongly associated with the EPS of S. oneidensis biofilms and allow imaging of these microbial communities. The location of these probes within the EPS was dependent on the surface ligand structure and on its density at the periphery of QDs. A homogeneous dispersion of hydrophilic QDs in the whole biofilm was observed, while amphiphilic QDs clusterized in the small hydrophobic domains. These new fluorescent probes will be of great use to understand the development and the reorganization of complex biological matrix like biofilms.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF

    Quenching of Quantum Dot Emission by Fluorescent Gold Clusters: What It Does and Does Not Share with the Förster Formalism

    No full text
    Understanding the interactions that control the energy transfer between dyes, or luminescent quantum dots (QDs), and gold nanoparticles still has several unanswered questions. In this study we probed these interactions using a unique model where CdSe-ZnS QDs were coupled to fluorescent gold nanoclusters (AuNCs). Steady-state and time-resolved fluorescence measurements were used to investigate the effects of spectral overlap and separation distance on the quenching of QD photoemission in these assemblies, using three different size QDs with distinct emission spectra and a variable length polyethylene glycol bridge. We found that the QD photoluminescence quenching efficiency depends on the spectral overlap and separation distance, with larger quenching efficiencies than what would be expected for a QD-dye pair with similar overlap. Moreover, despite the large losses in QD PL, we found no resonance enhancement in the cluster emission for any of the sample configurations used. These results indicate that the mechanism driving the quenching by metal clusters shares an important feature (namely dependence on the spectral overlap) with the Förster dipole–dipole coupling at the heart of fluorescence resonance energy transfer (FRET) and widely validated for dye-dye and QD-dye assemblies. They also prove that the energy losses induced by metal nanostructures are governed by a process that is different from the Förster mechanism

    Dissolution Testing of Nicotine Release from OTDN Pouches: Product Characterization and Product-to-Product Comparison

    No full text
    In recent years, oral tobacco-derived nicotine (OTDN) pouches have emerged as a new oral tobacco product category. They are available in a variety of flavors and do not contain cut or ground tobacco leaf. The on!® nicotine pouches fall within this category of OTDN products and are currently marketed in seven (7) flavors with five (5) different nicotine levels. Evaluation of the nicotine release from these products is valuable for product assessment and product-to-product comparisons. In this work, we characterized the in vitro release profiles of nicotine from the 35 varieties of on!® nicotine pouches using a fit-for-purpose dissolution method, employing the U.S. Pharmacopeia flow-through cell dissolution apparatus 4 (USP-4). The nicotine release profiles were compared using the FDA’s Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms. The cumulative release profiles of nicotine show a dose dependent response for all nicotine levels. The on!® nicotine pouches exhibit equivalent percent nicotine release rates for each flavor variant across all nicotine levels. Furthermore, the nicotine release profiles from on!® nicotine pouches were compared to a variety of other commercially available OTDN pouches and traditional pouched smokeless tobacco products. The percent nicotine release rates were found to be dependent on the product characteristics, showing similarities and differences in the nicotine release profiles between the on!® nicotine pouches and other compared products

    Understanding the Self-Assembly of Proteins onto Gold Nanoparticles and Quantum Dots Driven by Metal-Histidine Coordination

    No full text
    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His<sub>7</sub>-appended maltose binding protein (MBP-His) and a fluorescent His<sub>6</sub>-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His<sub>7</sub> self-assembly, while NP-to-mCherry-His<sub>6</sub> binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, <i>K</i><sub>d</sub><sup>–1</sup> ∼ 1–5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems
    corecore