129 research outputs found
Testing the Cactus code on exact solutions of the Einstein field equations
The article presents a series of numerical simulations of exact solutions of
the Einstein equations performed using the Cactus code, a complete
3-dimensional machinery for numerical relativity. We describe an application
(``thorn'') for the Cactus code that can be used for evolving a variety of
exact solutions, with and without matter, including solutions used in modern
cosmology for modeling the early stages of the universe. Our main purpose has
been to test the Cactus code on these well-known examples, focusing mainly on
the stability and convergence of the code.Comment: 18 pages, 18 figures, Late
A hyperbolic slicing condition adapted to Killing fields and densitized lapses
We study the properties of a modified version of the Bona-Masso family of
hyperbolic slicing conditions. This modified slicing condition has two very
important features: In the first place, it guarantees that if a spacetime is
static or stationary, and one starts the evolution in a coordinate system in
which the metric coefficients are already time independent, then they will
remain time independent during the subsequent evolution, {\em i.e.} the lapse
will not evolve and will therefore not drive the time lines away from the
Killing direction. Second, the modified condition is naturally adapted to the
use of a densitized lapse as a fundamental variable, which in turn makes it a
good candidate for a dynamic slicing condition that can be used in conjunction
with some recently proposed hyperbolic reformulations of the Einstein evolution
equations.Comment: 11 page
Unambiguous determination of gravitational waveforms from binary black hole mergers
Gravitational radiation is properly defined only at future null infinity
(\scri), but in practice it is estimated from data calculated at a finite
radius. We have used characteristic extraction to calculate gravitational
radiation at \scri for the inspiral and merger of two equal mass non-spinning
black holes. Thus we have determined the first unambiguous merger waveforms for
this problem. The implementation is general purpose, and can be applied to
calculate the gravitational radiation, at \scri, given data at a finite
radius calculated in another computation.Comment: 4 pages, 3 figures, published versio
Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars
This is the second in a series of papers on the construction and validation
of a three-dimensional code for the solution of the coupled system of the
Einstein equations and of the general relativistic hydrodynamic equations, and
on the application of this code to problems in general relativistic
astrophysics. In particular, we report on the accuracy of our code in the
long-term dynamical evolution of relativistic stars and on some new physics
results obtained in the process of code testing. The tests involve single
non-rotating stars in stable equilibrium, non-rotating stars undergoing radial
and quadrupolar oscillations, non-rotating stars on the unstable branch of the
equilibrium configurations migrating to the stable branch, non-rotating stars
undergoing gravitational collapse to a black hole, and rapidly rotating stars
in stable equilibrium and undergoing quasi-radial oscillations. The numerical
evolutions have been carried out in full general relativity using different
types of polytropic equations of state using either the rest-mass density only,
or the rest-mass density and the internal energy as independent variables. New
variants of the spacetime evolution and new high resolution shock capturing
(HRSC) treatments based on Riemann solvers and slope limiters have been
implemented and the results compared with those obtained from previous methods.
Finally, we have obtained the first eigenfrequencies of rotating stars in full
general relativity and rapid rotation. A long standing problem, such
frequencies have not been obtained by other methods. Overall, and to the best
of our knowledge, the results presented in this paper represent the most
accurate long-term three-dimensional evolutions of relativistic stars available
to date.Comment: 19 pages, 17 figure
High accuracy binary black hole simulations with an extended wave zone
We present results from a new code for binary black hole evolutions using the
moving-puncture approach, implementing finite differences in generalised
coordinates, and allowing the spacetime to be covered with multiple
communicating non-singular coordinate patches. Here we consider a regular
Cartesian near zone, with adapted spherical grids covering the wave zone. The
efficiencies resulting from the use of adapted coordinates allow us to maintain
sufficient grid resolution to an artificial outer boundary location which is
causally disconnected from the measurement. For the well-studied test-case of
the inspiral of an equal-mass non-spinning binary (evolved for more than 8
orbits before merger), we determine the phase and amplitude to numerical
accuracies better than 0.010% and 0.090% during inspiral, respectively, and
0.003% and 0.153% during merger. The waveforms, including the resolved higher
harmonics, are convergent and can be consistently extrapolated to
throughout the simulation, including the merger and ringdown. Ringdown
frequencies for these modes (to ) match perturbative
calculations to within 0.01%, providing a strong confirmation that the remnant
settles to a Kerr black hole with irreducible mass and spin $S_f/M_f^2 = 0.686923 \pm 10\times10^{-6}
Study of multi black hole and ring singularity apparent horizons
We study critical black hole separations for the formation of a common
apparent horizon in systems of - black holes in a time symmetric
configuration. We study in detail the aligned equal mass cases for ,
and relate them to the unequal mass binary black hole case. We then study the
apparent horizon of the time symmetric initial geometry of a ring singularity
of different radii. The apparent horizon is used as indicative of the location
of the event horizon in an effort to predict a critical ring radius that would
generate an event horizon of toroidal topology. We found that a good estimate
for this ring critical radius is . We briefly discuss the
connection of this two cases through a discrete black hole 'necklace'
configuration.Comment: 31 pages, 21 figure
Negative Energy Density States for the Dirac Field in Flat Spacetime
Negative energy densities in the Dirac field produced by state vectors that
are the superposition of two single particle electron states are examined. I
show that for such states the energy density of the field is not bounded from
below and that the quantum inequalities derived for scalar fields are
satisfied. I also show that it is not possible to produce negative energy
densities in a scalar field using state vectors that are arbitrary
superpositions of single particle states.Comment: 11 pages, LaTe
Prevalence of pre-diabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia
Objectives: To assess the prevalence of undiagnosed diabetes and pre-diabetes in the healthy population in the Mollerussa cohort. As a secondary objective, to identify the variables associated with these conditions and to describe the changes in glycaemic status after 1 year of follow-up in subjects with pre-diabetes. Design: Prospective observational cohort study. Setting: General population from a semi-rural area. Participants: The study included 583 participants without a diagnosis of diabetes recruited between March 2011 and July 2014. Results: The prevalence of undiagnosed diabetes was 20, 3.4% (95% CI 2.6 to 4.2) and that of pre-diabetes was 229, 39.3% (37.3 to 41.3). Among those with pre-diabetes, 18.3% had isolated impaired fasting plasma glucose (FPG) (FPG: 100 to <126 mg/dL), 58.1% had isolated impaired glycated haemoglobin (HbA1c) (HbA1c 5.7 to <6.5) and 23.6% fulfilled both criteria. Follow-up data were available for 166 subjects; 41.6%(37.8 to 45.4) returned to normoglycaemia, 57.6% (57.8 to 61.4) persisted in pre-diabetes and 0.6% (0 to 1.2) progressed to diabetes. Individuals with pre-diabetes had worse cardiometabolic risk profiles and sociodemographic features than normoglycaemic subjects. In the logistic regression model, variables significantly associated with pre-diabetes were older age (OR; 95% CI) (1.033; 1.011 to 1.056), higher physical activity (0.546; 0.360 to 0.827), body mass index (1.121; 1.029 to 1.222) and a family history of diabetes (1.543; 1.025 to 2.323). The variables significantly associated with glycaemic normalisation were older age (0.948; 0.916 to 0.982) and body mass index (0.779; 0.651 to 0.931). Conclusions: Among adults in our region, the estimated prevalence of undiagnosed diabetes was 3.4% and that of pre-diabetes was 39.3%. After a 1-year follow-up, a small proportion of subjects (0.6%) with pre-diabetes progressed to diabetes, while a high proportion (41.6%) returned to normoglycaemia. Individuals with pre-diabetes who returned to normoglycaemia were younger and had a lower body mass inde
Equation of State for Neutralino Star as a Form of Cold Dark Matter
In order to study the structure of neutralino star and dark galaxy, we
consider dynamical interactions due to boson-exchange in the neutralino matter.
Taking into account interactions of neutralinos with bosons, we derive the
equation of state (EOS) of neutralino stars in terms of the relativistic mean
field approach. Then we apply the resulting EOS to investigate properties of
the neutralino star such as its density profile and mass limit. For example, if
the neutralino mass is around 1 TeV, the Oppenheimer mass limit of the
neutralino star is obtained as , and the
corresponding radius is about 7.8 mm. Actually, due to an increasing
annihilation rate as indicated by our calculation, this dense state can never
be realized in practice. Our results also show that the low density neutralino
star may be a possible aggregation of the cold dark matter.Comment: 5 pages, 5 figures; v2: matches published versio
Galactic Collapse of Scalar Field Dark Matter
We present a scenario for galaxy formation based on the hypothesis of scalar
field dark matter. We interpret galaxy formation through the collapse of a
scalar field fluctuation. We find that a cosh potential for the
self-interaction of the scalar field provides a reasonable scenario for
galactic formation, which is in agreement with cosmological observations and
phenomenological studies in galaxies.Comment: 4 pages, 3 figue
- …